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This article employs a real options approach to investigate the 
determinants of an optimal capital structure in real estate investment. An 
investor has the option to delay the purchase of an income-producing 
property because the investor incurs sunk transaction costs and 
receives stochastic rental income. At the date of purchase, the investor 
also chooses a loan-to-value ratio,  which balances the tax shield benefit 
against the cost of debt financing resulting from a higher borrowing rate 
and a lower rental income. An increase in the sunk cost or the risk of 
investment will not affect the financing decision, but will delay investment. 
An increase in the income tax rate or a decrease in the depreciation 
allowance will encourage borrowing and delay investment, while an 
increase in the penalty from borrowing, a decrease in the investor’s 
required rate of return, or worse real estate performance through 
borrowing, will discourage borrowing and delay investment. 
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1. Introduction 
 

This article investigates the investment and financing decisions of a real estate 

investor who considers the acquiring of an income-producing property through 

debt financing. The existing literature that theoretically investigates this issue 

includes Cannaday and Yang (1995, 1996), Gau and Wang (1990), and 

McDonald   (1999).
1

 All of these articles assume that the investor must 

purchase the property now or never. Our article significantly differs from them 

because we allow a property investor to have the option to delay the purchase. 

 

This article, which belongs to the burgeoning literature that applies the real 

options approach to investment (Dixit and Pindyck, 1994), assumes that an 

investor chooses an optimal date to maximize the net expected present value of 

an income-generating property. The investor receives the stochastic income 

generated from the service of this property, but incurs sunk costs such as 

statutory costs and third-party charges (Brueggeman and Fisher, 2006). The 

interaction of these sunk costs and the stochastic cash flow confers on the 

investor an option value to delay the purchase of property. Consequently, the 

investor will not purchase the property until s/he is sufficiently satisfied with 

the current income generated by the service of the property. At the optimal date 

of purchasing, the investor also chooses a loan-to-value ratio that involves the 

tradeoff as follows: the investor enjoys tax deductible benefits from interest 

payments and capital depreciation, but will be charged a higher mortgage rate 

when the loan-to-value ratio increases, and may receive a lower income 

because the potential tenants may be willing to pay less as they realize that 

their landlord is highly indebted, and thus, highly susceptible to bankruptcy.
2
 

 

Aside from allowing the investor to delay the purchase of property, our article 

also departs from the existing literature in the following respects. First, we 

assume that property value is endogenously determined, while Cannaday and 

Yang (1995; 1996), and McDonald (1999) assume that the purchase price and 

the net selling price of a property are both exogenously determined. Our 

assumption is more plausible because the evolution of the stochastic income 

generated by the service of a property determines the dynamic evolution of the 

property value. Second, we assume that debt financing may adversely affect 

real estate performance, such that investment and financing decisions interact 

with each other. As such, factors that characterize the evolution of the property 

                                                      
1 Ever since the seminal paper by Modigliani and Miller (1958), the determinants of 

corporate borrowing have been a heated topic in the corporate finance literature. See, 

for example, the survey paper by Harris and Raviv (1991), and Myers (2003). This 

topic has received little attention, however, in the real estate investment literature. See 

the discussions in Gau and Wang (1990) and Clauretie and Sirmans (2006, Chapter 15). 
2 This tradeoff significantly differs from that addressed in the finance literature, which 

also allows the tax advantages of borrowing, but considers the costs associated with 

either financial distress, or the conflict of interest between equity and debt holders. See, 

for example, Harris and Raviv (1991) and Myers (2003). 
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value will also affect the optimal level of debt. In contrast, Cannaday and Yang 

(1995; 1996), and McDonald (1999) abstract from this adverse effect, and thus, 

the investment and financing decisions are independent.
3
 

 

The remaining sections are organized as follows. We first present the basic 

assumption of the model, and then derive the conditions for the investment 

timing and the loan-to-value ratio decided by an investor who indefinitely 

holds the property. We further consider the polar case where debt financing 

does not affect real estate performance, in which we derive some testable 

implications with regards to the determinants of debt financing. We then move 

to a more general case, in which debt financing adversely affects real estate 

performance, but find that most of our theoretical predictions become 

indefinite. Consequently, we employ plausible parameters in order to carry out 

some numerical comparative-statics testing in the following section. The last 

section concludes and offers suggestions for future research.  

 

 

2. The Model 
 

The model presented in this section extends that of McDonald (1999), which in 

turn, resembles that of Cannaday and Yang (1995, 1996). We depart from these 

studies by allowing non-negligible transaction costs, uncertainty in demand, as 

well as endogenously determined property values. Consider an investor who 

chooses an optimal date to purchase a commercial property, as well as the 

percentage of debt to finance the purchase. For ease of exposition, we consider 

the interest only mortgage loan. That is, we assume that the investor pays only 

interest in the holding period, and repays the principal when selling the 

property. Suppose that we start at time t0. Then, the expected net present value 

of this investment is given by: 
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where T is the date on which the property is purchased; ATCF(s) is the 

after-tax cash flow from the net operating income at time t; )( tTATER +  is the 

after-tax equity reversion from selling the property at time )( tT + , where t  is 

the holding period of the real estate investment; ρ is the equity investor’s 

required rate of return; EI (T) is the initial equity investment; and f is the 

transaction cost. 

 

                                                      
3 Our article also differs from Gau and Wang (1990) and McDonald (1999), as these 

two studies allow for the cost associated with bankruptcy (Stiglitz, 1972) when the 

investor fails to pay off debt obligations. Our article, however, abstracts from this 

bankruptcy cost. 
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Each of the four terms in Equation (1) is defined as follows. The after-tax cash 

flow for the investor is written as:  

)()()1(/)()()1()( MrTMHτnTHτδsPτsATCF −−+−= ,    (2)  

where tTsT +<< . The term τ is the (constant) income tax rate, δ is the 

proportion of the property that is depreciable capital (that is, not land), M is the 

loan-to-value ratio, n is the length of the depreciation period (39 years for 

commercial real estate in the U.S.)
4
 r (M) is the borrowing rate (where r’ (M) > 

0), H (T) is the initial housing price at time T, and P(s) is the net operating 

income generated from the property investment at time s, which follows the 

geometric Brownian motion as given by:  

)()(σ)()(µ)( sdZsPdssPMsdP += ,               (3) 

where µ (M) is the expected growth rate of P (s), expressed as a non-positive 

function of M, σ is the instantaneous volatility of the growth rate, and dZ (s) is 

an increment to a standard Wiener process. The housing price at time s, H (s), is 

equal to the expected discounted present value of the net operating income, 

and is thus given by:  

 
)(µρ

)(
)(

M

sP
sH

−
= .                        (4) 

Note that both the interest payments, MH (T) r (M), and straight-line 

depreciation permitted under the tax code, δH (T)/n, are tax deductible. Upon 

investment, the property investor trades the tax shield benefits with two types 

of costs associated with debt financing when choosing a loan-to-value ratio. 

The first one, which is already addressed in Cannaday and Yang (1995, 1996), 

and McDonald (1999), indicates that the borrowing rate increases with the 

loan-to-value ratio, given that the investor is more likely to default when 

borrowing more. This positive relation is supported by the empirical study of 

Maris and Elayan (1990). The second one, which is novel to the literature, 

indicates that the expected growth rate of the net operating income is 

non-increasing with the loan-to-value ratio. This non-positive relation indicates 

that those who intend to rent commercial property may be willing to pay less 

when they realize that their landlord bears more debt and is thus, more 

susceptible to bankruptcy. This is plausible because those who rent in a 

commercial property, such as a shopping mall, would typically rather stay at 

the same place for a long period of time so that they can attract loyal 

customers.
5
 

 

                                                      
4 Note that depreciation is only allowed for the period of n even if the holding period 

t is longer than n. 
5 This assumption is also plausible for a competitive commercial property market 

where landlords who substantially borrow may need to lower the rent to attract 

potential tenants.  
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The after-tax equity reversion for the investor at time T t+  is given by:
6
 

)]/)(δ()()([τ)()()( ntTHTHtTHTMHtTHtTATER +−+−−+=+ ,  (5) 

where )( tTH +  is the selling price on date tT +  at which the investor receives 

the payment. On this date, however, the investor must also pay off the loan 

balance, )(TMH , and pay taxes on the capital gain of +−+ )()( THtTH  

)/)(( ntTHδ In addition, the amount of equity investment at time T is simply: 

 )()1()( THMTEI −= ,                     (6) 

Finally, the transaction cost f is also novel to the literature. As Brueggeman 

and Fisher (2006, Chapter 4) suggest, a mortgage loan borrower, who is also 

the buyer of a property in our framework, incurs statutory costs and third- 

party charges. The former includes certain charges for legal requirements that 

pertain to the title transfer, recording of the deed, and other fees required by 

state and local law. The latter includes charges for services, such as legal fees, 

appraisals, surveys, past inspection, and title insurance. All of these changes, 

however, are unrecoverable after the property is purchased.
7
  

 

Given that the investor incurs sunk costs in purchasing a property and that the 

property offers a stochastic cash flow in the future, the investor must thus wait 

for a sufficiently good state of nature to purchase the property, as the real 

options literature suggests (Dixit and Pindyck, 1994). Specifically, the investor 

simultaneously chooses a date T and a loan-to-value ratio M, so as to maximize 

the expected net present value of the investment. This problem is defined as:  

),,),(()),(( 00
,

00
*

0
MTttPWEMaxttPW t

MT
= .         (7) 

As indicated by Dixit and Pindyck (1994, p.139), when the net operating 

income is stochastic, we are unable to find a non-stochastic timing of 

investment. Instead, the investment rule takes the form where the investor will 

not purchase the property until the net operating income P(t0) reaches a critical 

level, denoted by P
*
. At that instant, the investor will choose a loan-to-value 

ratio, denoted by M
*
. Consequently, the initial purchase price of the property, 

P
*
/ (ρ−µ (M

*
)) as given by Equation (4), is endogenously determined. Our 

model thus significantly departs from that in the literature as we endogenize 

the value of the property. 

 

V2 (P (t), t) is denoted as the gross value of investment, i.e., 

                                                      
6 Note that Equation (5) applies to the case in which t n≤ . When n t> , we need to 

impose n t= .  
7 Broadly speaking, the property buyer also incurs the transaction sunk cost such as 

opportunity cost in the form of time spent on negotiating with both the property seller 

and the mortgage loan provider. 
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where Tt ≥ , and ))((1 tPV  is denoted as the investor’s option value from 

waiting in the region where *
0 )( PtP < . The investor’s option value is 

time-independent, i.e., 0/)(1 =∂⋅∂ tV , because the investor has some leeway 

in choosing the timing of investment rather than being forced to purchase the 

property during a finite period of time. By applying Ito’s lemma, V1 (P (t)) 

satisfies the ordinary differential equation given by:  
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By contrast, if *

0 )( PtP ≥ and t ≥ t0, then the investment is made, and thus, V2 

(P (t), t) satisfies the partial differential equation given by: 
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The boundary condition is given by: 

 ( )( ) ( )tTATERtTtTPV +=++ ,2
.              (11) 

Equation (10) has an intuitive interpretation. If we treat V2 (P (t), t) as an asset 

value, then the expected capital gain of the investment (the sum of the first 

three terms on the left-hand side) plus the dividend (the sum of the last three 

terms on the left-hand side) must be equal to the return required by the investor 

(the term on the right-hand side). Equation (11) simply says that when the 

investor sells the property, the value of the property must be equal to the 

after-tax equity reversion for the investor. 

 

Appendix A shows that when an investor holds a property for an infinite time 

horizon, then the investment and financing decisions for the investor 

respectively satisfy the two equations given by: 

0
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Equation (12) is derived based on the condition that an investor balances the 

immediate benefit from purchasing a property against the benefit from waiting 

for a more favorable state of nature. Equation (13) is derived based on the 

condition that an investor trades off the benefit from the tax advantages of debt 

financing against the adverse effect of debt financing that results from a higher 

borrowing rate and a possible lower expected growth rate of the net operation 

income. We can simultaneously use Equations (12) and (13) to derive the 

solution for the choice of the loan-to-value ratio, M
*
, and that for the critical 

level of the net operating income that triggers investment, P
*
.  

 

To compare our model with those in the existing literature, we first investigate 

the polar case where debt financing does not affect real estate performance at 

all, i.e., µ’  (M) = 0. From Equation (13), this condition implies that:  

 0))(')()(τ1(ρ =+−− MMrMr .             (16) 

Equation (16), which is exactly the same as that in McDonald (1999), suggests 

that an investor will choose a higher loan-to-value ratio, if the investor either 

requires a higher rate of return, faces a lower income tax rate, or is penalized 

less when borrowing more. 

 

Let us switch to the case where debt financing adversely affects real estate 

performance, i.e., µ’ (M 
*
) < 0. Given this premise and the requirement that 

0/),( *** <∂∂ MMPH , it follows that M 
*

 < Ma, where Ma is defined as the M 

that satisfies Equation (16). In other words, when debt financing adversely 

affects real estate performance, then the loan-to-value ratio chosen by the 

investor will be lower than its counterpart when debt does not affect real estate 

performance at all. 

 

We assume that an investor simultaneously makes the investment and the 

financing decision. In order to make comparisons with the results of the 

literature, we will first separately investigate each decision, assuming that the 

other decision is exogenously given. Differentiating H  (P
*
, M

*
) = 0 in Equation 

(13) with respect to its various underlying parameters yields the following 

results. 

 

Proposition 1 Given the timing in the purchase of a property, the investor will 

take on more debt (M 

*
 increases) if: (i) the investor is allowed to depreciate 

capital less rapidly (n increases); (ii) the investor is penalized less through 

debt financing (r ’(M) decreases); (iii) the investor expects borrowing to exhibit 
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a less adverse impact on real estate performance (the absolute value of µ’(M) 

is smaller); and (iv) the investor has less depreciable capital (δ decreases).
8
 

Proof: See Appendix B. 
 

The result of Proposition 1(ii) is the same as that in the literature such as 

McDonald (1999), and the reason for Proposition 1(iii) is obvious. The result 

for Propositions 1(i) and 1(iv) may seem to counter intuition at first sight 

because tax deductions from depreciation allowance will be lower as the 

investor is either allowed to depreciate capital less rapidly (n increases) or has 

less depreciable capital (δ decreases). However, it is the interaction effect 

between µ’ (M) and δ or n that matters for the financing decision. As suggested 

by Equation (13), an increase in n or a decrease in δ will mitigate the negative 

impact on real estate performance which results from an increase in the 

loan-to-value ratio, thus encouraging the investor to borrow more. 

 

Differentiating D  (P
*
, M

*
) = 0 in Equation (12) with respect to its various 

underlying parameters yields the following results. 

 

Proposition 2 Given an investor’s loan-to-value ratio, the investor will delay 

the purchase of a property (P  

*
 increases) if: (i) the investor incurs a larger 

transaction cost ( f increases ); (ii) the investor is allowed to depreciate capital 

less rapidly (n  increases); (iii) the investor is penalized more through debt 

financing (r’(M
*
) increases); (iv) the investor expects to receive less return 

through debt financing (the absolute value of µ’(M 

*
) is larger); (v) the investor 

has less depreciable capital (δ decreases); and (vi) the investor faces a higher 

risk in purchasing the property (σ increases); and (vii) the investor faces a 

higher income tax rate (τ increases).
9
 

Proof: See Appendix C. 

 

Propositions 2(i) and (vi) are the standard results of the real options literature 

(see, for example, Dixit and Pindyck, 1994), which indicate that greater 

uncertainty and/or irreversibility will delay investment. The other scenarios 

stated in Proposition 2 follow because an investor will receive less return from 

investing immediately. 

 

Propositions 1 and 2 help us investigate how the various forces affect the 

investment and financing decisions for the case where these two decisions are 

interacting with each other. We, however, can only reach definite comparative 

-statics results for the two exogenous forces, namely, the sunk costs and the 

risk of investment, as stated below in Proposition 3.   

                                                      
8 Furthermore, we find that an investor’s incentive to borrow is ambiguously affected if 

the investor either faces a higher income tax rate (τ is higher) or requires a higher rate 

of return (ρ is higher). See Equations (B5) and (B6), respectively. 
9
 Furthermore, we find that an investor’s incentive to purchase property is ambiguously 

affected if the investor requires a higher rate of return, as suggested by Equation (C7). 
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Proposition 3 An investor who incurs a larger sunk cost of investment or faces 

a higher risk of investment will not alter the loan-to-value ratio, but will delay 

investment and receive a higher net investment value.  

Proof: See Appendix D.  

 

We use Figure 1 to explain the results of Proposition 3. Suppose that we start 

from an initial point E0, which is the intersection of line I0I0 and line F0F0.  In 

the figure, line I0I0 characterizes the optimal condition for the choice of 

investment timing as shown by Equation (12). Note that we assume that M
*
 

exhibits a negative effect on P
*
 in this figure (our result will be qualitatively 

the same even if M
* 
exhibits a non-negative effect on P

*
).

10
 Furthermore, line 

F0F0, which characterizes the optimal condition for the financing decision as 

shown by Equation (13), is vertical because P
*
 will not affect M

* 
at all.  

Proposition 2 indicates that an investor who incurs a higher transaction cost or 

faces a higher risk of investment will delay the purchase of a property. This is 

shown in Figure 1, where the optimal timing decision characterized by line I0I0 

will shift upward to line I1I1, while the optimal debt financing decision 

characterized by line F0F0 will remain unchanged. Thus, the investor will wait 

for a better state to invest, but will not alter the loan-to-value ratio. The net 

value of investment will increase, given that the investor purchases the 

property at a better state of nature. 

 

The results of Proposition 3 imply that neither irreversibility nor uncertainty 

will affect an investor’s choice of the loan-to-value ratio. This comes from our 

assumption that an investor has the option to delay the purchase of a property, 

but not the option to default the loan. As a result, the investor will choose the 

same loan-to-value ratio regardless of the state of nature at which the investor 

purchases the property. If we allow the investor to have the default option (see 

e.g., Kau et al., 1993), then these two exogenous forces will also affect the debt 

financing decision of the investor because different states of nature will entail 

different likelihoods of default.
11

 

 

We will use plausible parameters to employ a numerical analysis to make our 

theoretical predictions stated in Propositions 1-3 more vivid. We consider both 

cases, that is, where the holding period is infinite and finite. Appendix E shows 

the procedures to find the solutions for the latter case. 

 

 

 

 

                                                      
10 See Equation (C8) which indicates that M* exhibits an ambiguous effect on P*. 
11 If we allow the option to default, then an investor will both purchase a property at an 

earlier date and borrow more because the investor will receive the (put) option value to 

default, which also increases the benefit from borrowing.  
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Figure 1 The Effect of an Increase in Either the Sunk Cost or the 

Risk of Investment.  

This graph shows that either change will move the equilibrium point from E0, the 

intersection of I0I0 (the line that represents the optimal condition of the 

investment decision) and F0F0 (the line that represents the optimal condition of 

the financing decision), to E1. As a result, choices of the loan-to-value ratio will 

remain unchanged at M0
*; while the critical level of the net operating income that 

triggers investment will increase from P0
* to P1

*. 

 
 

 

 

3. Numerical Analysis 
 

We assume that MrMr 10 λ)( += , and MM 20 λµ)(µ += , such that 

1λ)(' =Mr   (> 0) 

and )0(λ)('µ 2 <−=M . Our chosen benchmark case is as follows: sunk cost f = 

1; income tax rate τ = 20%; required rate of return on equity ρ=12% per year; 

the number of years allowed for depreciation for tax purposes n  =  39 years; 

proportion of depreciable capital δ =  0.5; minimum borrowing rate r0 = 7% per 

year; as an investor increases the loan-to-value ratio by 1%, then the mortgage 

rate that the investor faces will be increased by 0.05%, i.e., λ1= 0.05; the net 

operating income is expected to grow at most 2%, i.e., µ0 = 2% per year; an 

investor expects the growth rate of the net operating income to decline by 

0.01% if the investor increases loan-to-value increases by 1%, i.e., λ2 = 0.01; 

0F
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the instantaneous volatility of that growth rate is equal to 15% per year, i.e., σ 

= 15% per year; and the holding period is infinite, i.e., ∞=t .
12

  

 
 
Table 1 Determinants of the Investment Timing and Loan-to-Value 

Ratio. 

Benchmark case: f = 1, τ = 20%, ρ = 12% per year, n = 39 years, δ = 0.5, 
r0 = 7% per year, λ1 = 0.05, µ0 = 2% per year, λ2 = 0.01,σ = 15% per 

year, t = ∞ , M 
* 
= 79.52%, P 

*
=4.5324, and W 

*
=0.4483.  

 Variation in f 

 0.5 0.75 1 1.25 1.5 

M 
*
 0.7952 0.7952 0.7952 0.7952 0.7952 

P 
*
 

W 
*
 

2.2662 

0.2241 

3.3993 

0.3362 

4.5324 

0.4483 

5.6655 

0.5604 

6.7986 

0.6724 

 Variation in τ 

 10% 15% 20% 25% 30% 

M 
*
 0.6257 0.7058 0.7952 0.8956 1.0 

P 
*
 

W 
*
 

2.5503 
0.4636 

3.4425 
0.4563 

4.5324 
0.4483 

5.3023 
0.4395 

4.9560 
0.4307 

 Variation in ρ 

 11.5% 11.75% 12% 12.25% 12.5% 

M 
*
 0.6497 0.7204 0.7952 0.8744 0.9586 

P 
*
 

W 
*
 

6.2215 
0.4765 

5.4605 
0.4622 

4.5324 
0.4483 

3.6560 
0.4349 

2.9249 
0.4218 

 Variation in n 

 31 35 39 43 47 

M 
*
 0.7945 0.7949 0.7952 0.7955 0.7957 

P 
*
 

W 
*
 

3.9527 
0.44835 

4.2511 
0.44831 

4.5324 
0.44829 

4.7966 
0.44826 

5.0444 
0.44824 

 Variation in δ 

 0.4 0.45 0.5 0.55 0.6 

M 
*
 0.7958 0.7955 0.7952 0.7949 0.7946 

P 
*
 

W 
*
 

5.1664 
0.44823 

4.8286 
0.44826 

4.5324 
0.44829 

4.2704 
0.44831 

4.0371 
0.44834 

 Variation in λ1 

 0.045 0.0475 0.05 0.0525 0.055 

M 
*
 0.8800 0.8354 0.7952 0.7587 0.7254 

P 
*
 

W 
*
 

2.6944 
0.4409 

3.4243 
0.4448 

4.5324 
0.4483 

6.4160 
0.4515 

10.3262 
0.4545 

(Continued…)      
 
 
 

                                                      
12 According to Goetzmann and Ibbotson (1990), during the period of 1969 to 1989, 

the annual standard deviation for REITs on commercial property was equal to 15.4%. 

We use this as a proxy for the volatility of the growth rate of the net operating income. 
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(Table 1 continued) 
 Variation in λ2 

 0 0.005 0.01 0.015 0.02 

M 
*
 0.8000 0.7975 0.7952 0.7931 0.7910 

P 
*
 

W 
*
 

4.4236 

0.5263 

4.4764 

0.4852 

4.5324 

0.4483 

4.5916 

0.4152 

4.6239 

0.3853 

 Variation in σ 

 10% 12.5% 15% 17.5% 20% 

M 
*
 0.7952 0.7952 0.7952 0.7952 0.7952 

P 
*
 

W 
*
 

4.0940 
0.3082 

4.3071 
0.3763 

4.5324 
0.4483 

4.7697 
0.5241 

5.0189 
0.6037 

 Variation in t  

 10 15 20 25 30 ∞  

M 
*
 0.7968 0.7963 0.7915 0.7954 0.7961 0.7952 

P 
*
 

W 
*
 

5.2597 
0.0615 

5.2804 
0.1496 

5.2835 
0.3106 

5.3169 
0.4519 

5.3322 
0.5361 

4.5324 
0.4483 

Note: M 

*: the optimal loan-to-value ratio; P 

*: the critical level of the net operating 
income that triggers investment; W 

*: the net value of investment; f : the sunk cost of 
investment; τ: the income tax rate; ρ: an investor’s required rate of return; n: the 
number of years allowed for depreciation for tax purposes; δ: the proportion of 
depreciable capital; r0: the minimum borrowing rate; λ1: the size of the effect of debt 
financing on the borrowing rate; µ0: the maximum expected growth rate of the net 
operating income; λ2: the size of the effect of debt financing on that expected growth 

rate; σ: the instantaneous volatility of that expected growth rate; and t : the holding 

period. 

 

 

Given this set of benchmark parameter values, we find that the investor will 

not purchase a property until the net operating income reaches 4.5324 (P 

* 
= 

4.5324). At that instant, the investor will use 79.52% debt to finance this 

purchase (M 
* 

=79.52%), and will receive a net value equal to 0.4483 (W 
* 

= 

0.4483.
13

 We also find that the P
* 

and M
* 

defined in Equation (12) are 

negatively correlated, as shown by line I0I0 in Figures 1, 2, and 3. 

 

Table 1 shows the results for f changes in the region (0.5, 1.5), τ in the region 

(10%, 30%), ρ in the region (11.5%, 12.5%), n in the region (31, 47), δ in the 

region (0.4, 0.6), λ1 in the region (0.045, 0.055), λ2 in the region (0, 0.02), σ in 

the region (10%, 20%), and t in the region of (10, ∞ ), holding all the other 

parameters at their benchmark values. 

 

 

                                                      
13 The ratio of the sunk cost, f, to the housing price, P*/ (ρ-µ (M*)), is equal to 2.38%, 

which is a little lower than the average level (see, e.g., 5-6% estimated by Stokey, 2009, 

p.108). Either a lower tax rate or lower degree of uncertainty will drive this ratio close 

to the average level (See Table 1).  
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Figure 2 The Effect of an Increase in Either the Tax Rate or the 
Length of Depreciation for Tax Purposes, or A Decrease in 
Depreciable Capital.   

This graph shows that each change will move the equilibrium point from 
E0 to E1, such that choices of the loan-to-value ratio will increase from 
M0

*
 to M1

*
, and the critical level of the net operating income that triggers 

investment will increase from P0
*
 to P1

*
.  

 
 

 

Table 1 indicates the following results. First, (a) an investor will wait for a 

better state to purchase a property and receive a higher net value (both P
*
 and 

W
* 
increase), but will choose the same level of debt (M

*
 remains unchanged) if 

the investor incurs a higher transaction cost (f increases) or faces a higher risk 

(σ increases). These results conform to those stated in Proposition 3. Second, 

(b) an investor will wait for a better state to purchase a property and use more 

debt, but receive a lower net value (both P
* 
and M

*
 increase, but W

* 
decreases), 

if the investor faces a higher income tax rate (τ increases), is allowed to 

depreciate capital less rapidly (n increases), or has less depreciable capital (δ 

decreases). Third, (c) an investor will wait for a better state to purchase the 

property and receive a higher net value, but use less debt (both P
* 

and W
* 

increase, and M
* 
decreases), if the investor either requires a lower rate of return 

(ρ decreases) or is penalized more through debt financing (λ1 increases). 

Fourth, (d) an investor will wait for a better state to purchase the property, but 

will use less debt and receive a lower net investment value (P
* 
increases, and 

both M
* 
and W

* 
decrease), if borrowing exhibits a more adverse impact on real 

estate performance (λ2 increases). Finally, (e) an investor will choose almost 

the same debt-to-loan value ratio for all holding periods. However, this is not 

the case for the choice of investment timing. When the holding period is 

*
1M

*
0M

*
M

0F

0F 1F

1I

1I

0I

0I

*
P

*
1P

*
0P

1F

1E

0E
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shorter than thirty years, the investor will wait for a better state to purchase a 

property and receive a higher net value (both P
* 
and W

* 
increase) if the investor 

holds the property longer ( t increases). However, for holding periods longer 

than thirty years, both P
* 

and W
* 

will then decline toward their respective 

steady-state levels. 

 

 

Figure 3 The Effect of an Increase in Penalty Through Borrowing, A 
Decrease in the Investor’s Required Rate of Return, or a 
More Adverse Effect of Debt Financing on Real Estate 
Performance.  

The graph shows that each change will move the equilibrium point from 
E0 to E1, such that choices of the loan-to-value ratio will decrease from 
M 0

*
 to M 1

*
, and the critical level of the net operating income that 

triggers investment will increase from P0
*
 to P1

*
. 

 
 

The reason for Result (b) is as follows. Consider an investor who is allowed to 

depreciate capital less rapidly (n increases) or has less depreciable capital (δ 

decreases). Each leads to a direct effect that forces the investor to purchase the 

property later, given the debt level, as suggested by Propositions 2(ii) and (v), 

respectively. This is shown in Figure 2 where line I0I0 shifts upward to I1I1. 

Each change also leads the investor to use more debt as shown by Propositions 

1(i) and (iv), respectively, such that the investor will be induced to purchase at 

an earlier date. This is shown in Figure 2 where line F0F0 shifts rightward to 

line F1F1. The equilibrium point thus shifts from E0 to E1, which indicates that 

the investor delays the purchase and borrows more. An increase in the 

*
1M

*
0M *

M

0F

0F1F

1I

1I

0I

0I

*
P

*
1P

*
0P

1F

1E

0E
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loan-to-value ratio, in turn, decreases the net value through lowering real estate 

performance. Similar arguments as the above also apply to the case where an 

investor faces a higher income tax rate (τ increases). 

 

The reason for Results (c) and (d) is as follows. Suppose that an investor is 

penalized more through debt financing (λ1 increases). Proposition 2(iii) 

indicates that an investor will delay purchasing, given debt levels. This is 

shown by a shift from line I0I0 upward to line I1I1 in Figure 3. Proposition 1(iii), 

on the other hand, indicates that the investor will borrow less, given the 

investment timing. This is shown by a shift of line F0F0 leftward to line F1F1 in 

Figure 3. The equilibrium point shifts from E0 to E1, thus suggesting that the 

investor will delay the purchase and also borrow less. Similar arguments as 

above can apply to the case where the investor requires a lower rate of return 

(ρ decreases) or debt exhibits a more adverse effect on real estate performance 

(λ2 increases). The net investment value will increase when either λ1 increases 

or ρ decreases because the investor invests at a better state of nature. By 

contrast, the adverse effect of an increase in λ2 will outweigh the positive 

effect that results from investing at a better state of nature such that the net 

investment value will decrease as a result. 

 

Finally, the reason for Result (e) is as follows. Consider that an investor 

increases the holding period in the region capped by thirty years. The value of 

the option to wait thus becomes more valuable as the holding period increases. 

As a result, the net investment value also increases. Nonetheless, the above 

pattern will eventually reverse when the holding period is longer than thirty 

years. The reason is obvious. Given that an investor enjoys tax deduction 

benefits from depreciation allowance for at most thirty nine years, the investor 

is unable to continuously receive a higher net value from the investment over 

an infinite horizon. 

 

 

4. Conclusion 
 

This article employs a real options approach to investigate the determinants of 

an optimal capital structure in real estate investment. We have assumed that an 

investor incurs transaction costs when purchasing an income-producing 

property that yields a stochastic net operating income. We find several testable 

implications as follows. First, an investor who incurs a larger sunk cost or 

faces a higher risk of investment will not alter the loan-to-value ratio, but will 

delay investment. Second, an investor who either faces a higher income tax 

rate or receives lower depreciation allowance for tax purposes will borrow 

more and delay investment. Finally, an investor who either pays more penalties 

from borrowing, requires less return for equity investment, or has worse real 

estate performance through borrowing will borrow less and delay investment. 
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This article builds a simplified model, and thus, can be extended in the 

following ways. First, this article implicitly assumes that an investor has a 

monopolized right to purchase a certain income-producing property (see, for 

example, Dixit and Pindyck, 1994). A more sophisticated model may allow 

different investors to compete for a certain property, or allow the seller of the 

property to play a more active role. Second, this article abstracts from several 

aspects of real estate financing, such as variable mortgage rates and 

prepayment penalties. It deserves further investigation of whether these factors 

also matter for the determinants of optimal capital structures. 
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Appendix A The Case for t = ∞= ∞= ∞= ∞  

If ∞=t , then 0/)),((2 =∂∂ tttPV , and 0)(
)(ρ 0

0
=+ −+− ttT

t etTATERE . For 

this case, suppose that ))((1 tPV  and  ))((2 tPF denote the option value of waiting 

in the region where *
0 )( PtP < and the property value in the region where 

( ) *0 PtP ≥ , respectively. Substituting V1 (P (t)) = P (t) 

β
 into Equation (8) yields 

the quadratic equation for solving β: 

0ρβ)(µ)1β(β
2

σ
)β(

2

=+−−−= Mφ .       (A1) 

Consequently, the solution for V1 (P (t)) in Equation (9) is given by: 

21 β
2

β
11 )()())(( tPAtPAtPV += ,               (A2) 

where β1 and β2 are, respectively, the larger and smaller roots of β in Equation 

(A1), and A1 and A2 are constants to be determined. 

 

Similarly, if P (t0) ≥ P 

*
 such that investment is made, then we can rewrite 

Equation (10) as:  
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. ))((ρ)(
))(µρ(

)τ1(
))(µρ(

τ

)()τ1(
)(

))((
)()(µ

)(

))((
)(

2

σ

2

**

2

2

2

2

2
2

tPFMr
M

P
M

M

P

n

δ

tP
tP

tPF
tPM

tP

tPF
tP

=
−

−−
−

+−+
∂

∂
+

∂

∂

    (A3) 

The solution for F2 (P) in Equation (A3) is given by: 

, 
))(µρ(

)(

ρ

)τ1(

))(µρ(ρ

τ
)1(

))(µρ(

)(
)τ1()()())((

**
ρ

β

2

β

12
21

M

MrMP

M

P

n
e

M

tP
tPBtPBtPF

n

−

−
−

−
−+

−
−++=

− δ

       (A4) 

where B1 and B2 are constants to be determined. 

 

The terms A1, A2, B1, B2, and the critical level of the net operating income that 

triggers investment, P
*
, are simultaneously solved from the boundary 

conditions as follows: 

0))((lim 1
0)(

=
→

tPV
tP

,                                         (A5) 

0)()(lim 21 β
2

β
1

0)(
=+

→
tPBtPB

tP

,                               (A6) 

0)()(lim 21 β
2

β
1

)(
=+

∞→
tPBtPB

tP

,                              (A7) 

f
M

P
MPFPV −

−
−−=

))(µρ(
)1()()(

*
*

2
*

1
,                        (A8) 

and 

))(µρ(

)1(

)(

)(

)(

)(
00

*
2

*
1

M

M

tP

PF

tP

PV
tttt

−

−
−

∂

∂
=

∂

∂
==

.                  (A9) 

Equation (A5) is the limit condition, which states that the investor’s option 

value from delaying the purchase is worthless as the net operating income 

approaches its minimum permissible value of zero. This condition requires that 

A2= 0.  Equations (A6) and (A7) are two other limit conditions, which 

respectively state that after an investor purchases a property, the investor’s 

option value from abandoning the property is worthless, when the net 

operating income is extremely bad and extremely good. These two conditions 

require that B1 =B2 = 0.  Equation (A8) is the value-matching condition, which 

states that at the optimal timing of purchasing (t0=T in our case), the investor is 

indifferent between exercising and not exercising the investment. Equation (A9) 

is the smooth-pasting condition, which guarantees that the investor will not 

derive any arbitrage profits by deviating the optimal exercise strategy.  
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Define ρ/)()τ1(/τδ)1(τ **ρ*
0 MrMnpeMA

n −−−+−= − . Multiplying Equation 

(A9) by P 

*
/β1, and then subtracting Equation (A8) from it yields: 

0
))(µρ(

)
β

1
1(),( 0*

*

1

** =+
−

−−= fA
M

P
MPD ,            (A10) 

1β1*
0*

1

1
))(µρ(β

1 −

−
= PA

M
A ,                            (A11) 

and A2= 0. Furthermore, the choice of M is found by setting the derivative of 

V1 (P  

*
) in Equation (A2), or equivalently, f

M

P
MPF −

−
−−

))(µρ(
)1()(

*
*

2
, with 

respect to M equals to zero. This yields: 

0))]()((
ρ

)τ1(
1[

))(µρ(

)('µ
),( ***0

*
** =+

−
−+

−
= MrMMr

M

AM
MPH .   (A12) 

The second-order conditions require that: 

0/),( *** <∂∂ PMPD ,                                  (A13) 

0/),(
*** <∂∂ MMPH ,                                 (A14) 

and 

. 0/),(/),(

/),(/),(

******

******

>∂∂⋅∂∂

−∂∂⋅∂∂

PMPHMMPD

MMPHPMPD
                 (A15) 

 

 

Appendix B Proof of Proposition 1 

Totally differentiating * *( , ) 0H P M = in Equation (13) with respect to n, r’  (M 
*
), 

µ’ (M 
*
), δ, τ, and ρ yields: 

 
*

1 0
M

n

∆∂
= >

∂ − ∆
,                           (B1) 

 
*

2 0
( )

M

r M

∆∂
= <

′∂ − ∆
,                           (B2) 

 
*

3 0
( )

M

M

∆∂
= >

′∂µ −∆
,                            (B3) 

 
*

4 0
M ∆∂

= <
∂ δ − ∆

,                            (B4) 

 , 05
*

<

>

∆−

∆
=

∂

∂

τ

M
                              (B5) 
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Q. E. D. 

 

 

 

Appendix C Proof of Proposition 2 

Equation (12) implies that:  

*

0 2

1
(1 )

f
P

A

ρ
= −

β
,                                         (C1) 

where we have used the relationship *
1 2 1 2( ( )) ( 1)( 1)Mβ β ρ − µ = β − β − ρ . 

Differentiating P  

* 
with respect to f, n , δ , σ , τ , ρ and M 

* 
yields: 
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and 
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Proposition 2(iii) follows because as r’  (M 
*
) increases, then r (M 

*
) in Equation 

(C1) also increases. Proposition 2(iv) follows because as the absolute value of 

µ’ (M 
*
) increases, then µ (M 

*
) in Equation (C1) will decrease.  

Q. E. D. 

 

 

 

Appendix D Proof of Proposition 3  

Equation (13) indicates that 
* *

( , )H P M  is independent of f and σ, thus suggesting 

that the optimal level of M 

*
 is neither related to f nor σ. Equations (C2) and (C5) 

then suggest that *
/ 0P f∂ ∂ >  and 

* / 0P∂ ∂σ > . Substituting A1 in Equation 

(A11) and P
*
 in Equation (C1) into the left-hand side of Equation (A8) yields 

the net value of investment equal to
1/ ( 1)f β − . Differencing this value with 

respect to f and σ yields 

0
)1β(
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f ,                                 (D1) 

and  
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 Q. E. D. 

 

 

 

Appendix E The Case for Finite t  

We follow Brennan and Schwartz (1978), and Hull and White (1990) to find 

P* and M 
*
. Let y (t) = ln P (t) such that 

* *
ln ,y P= 1( ( )) ( ( ))U y t V P t= for y (t) < y

*
 

and 
2( ( ), ) ( ( ), )Z y t t V P t t=  for  

*
0( )y t y≥ and 0t t≥ . As a result, Equation (9) 

can be rewritten as: 
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Furthermore, Equation (10) can be rewritten as:  
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Equation (11) can also be rewritten as:  
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Finally, Equation (6) can be rewritten as: 

*
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The choice of M is derived by setting the derivative of ( )⋅W  in Equation (1) 

with respect to M equals to zero. Let
2( ( ), ) ( ( ), ) /G P t t V P t t M= ∂ ∂ . As a result, 
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Let ( ( ), ) ( ( ), ) /= ∂ ∂g y t t Z y t t M . Differentiating Equation (E2) term by 

term with respect to M yields: 
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Evaluating Equation (E5) at T = t0 and M =M
*
 yields: 
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The boundary condition for ( ( ), )g y t t  is derived by differentiating Equation 

(E3) with respect to M, which yields: 

. 
))(µρ())(µρ(

)('µ
)

τδ
τ(

))(µρ(

)('µ)τ1(
)),((

**

2

2

)(

M

e

M

Me

n

t
M

M

Me
tTtTyg

yy

tTy

−
−

−
+−

−
−

−
=++

+

    (E8) 

We implement the explicit finite difference method (Hull and White, 1990) to 

solve for M
 *

 and P
*
. We begin by choosing a small time interval, t∆ , and a 

small change in ( )y t , y∆ . A grid is then constructed to consider the values of Z 

(t) when y (t) is equal to  

,,...,, max100 yyyy ∆+  

and time is equal to  

,,...,, 0100 ttttt +∆+  

The parameters y0 and ymax are the smallest and the largest values of y (t), and 

t0 is the current time. Let us denote 

10 yiy ∆+  by yi, 
10 tjt ∆+  by tj, and the 

value of the derivative security at the (i, j) point on the grid by Zi,j. The partial 

derivatives of Z (t) with respect to y (t) at node (i, j) are approximately as 

follows: 
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and 
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The time derivative for Z (t) is approximately: 
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Substituting Equations (E9) to (E11) into Equation (E2) yields: 
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where 
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Similarly, Equation (E6) can be written as: 
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We also need to impose the optimal condition for the timing of investment.  

The solution to ( ( ))U y t  in Equation (E1) is given by: 
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where A1 and A2 are constants to be determined, and β1 and β2 are defined in 

Appendix A. The optimal timing is determined by the following boundary 

conditions: 
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Solving Equations (E18)-(E20) simultaneously yields: 

 A2 = 0.                                              (E21) 
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The law of motion for Z(y(t),t) shown in Equation (E12) and that for g(y(t),t) 

shown in Equation (E16) are subject to two optimal conditions shown in 

Equations (E7) and (E23), respectively, and two boundary conditions shown in 

Equations (E3) and (E8), respectively. Solving these four conditions 

simultaneously yields the solutions for
0,

*
1 *,,

i
gMA , and

0,*
i

Z , where 
0,*

i
Z  is 

the gross value of investment. We can further use the relation
** i

y
eP = to find 

the critical level of the net operating income that triggers investment, as well 

as the net value of investment, .
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