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Machine learning (ML) methods, such as long short-term memory
(LSTM) models, are increasingly proposed as alternatives to traditional
statistical approaches for time series forecasting. However, given the
speed of the real estate industry in providing data that reflect economic
climates, there are few comparisons of ML techniques with statistical
methods in the context of real estate data during crisis periods. The
study investigates the predictive accuracy of the autoregressive
integrated moving average (ARIMA) and LSTM models by using daily
data from the Financial Times Stock Exchange/Johannesburg Stock
Exchange South Africa Listed Property Index. Through a
comprehensive analysis of 1628 observations from January 2, 2015, to
July 8, 2021, the study finds that the ARIMA models produce fewer
forecasting errors compared to the LSTM models during the COVID-19
crisis. These findings suggest that traditional ARIMA models may be
more efficient for forecasting volatile real estate data in crisis periods,
although the results could vary with larger and more complex datasets.
This research is crucial as it provides insights into the comparative
performance of statistical and ML models, thus emphasizing the need
for context-specific model selection in economic forecasting.
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1. Introduction

Over the years, time series forecasting has proven relevant as a predictive tool
for improving decision making across various sectors such as the health,
business, government, political, and technology sectors, and so on and so forth
(Makridakis et al., 2018). Where sufficient data are available, time series
analysis forecasting is beneficial for systematically and objectively predicting
variations in data collected over time (Rhif et al., 2019). Despite these benefits,
traditional forecasting time series data are beleaguered by several challenges,
such as incomplete data, generalizations where conclusions are liberally
inferred from single studies, challenges related to the choice of the right model
and relevant performance measures to accurately predict a given dataset. In
addition, where the data contain significant outliers, the accuracy or predictive
power of time series analysis models is notably reduced. Finally, it is well
known that traditional time series forecasting models are inadequate when
calculating complex, nonlinear data (Cerqueira et al., 2019). Such methods
therefore may not be sufficient when forecasting data during crisis periods.
There is a constant need to improve predictive accuracy and reduce market
volatility-induced forecasting errors in times of crises and uncertainties. To this
end, machine learning (ML) techniques have been often presented as modern
alternatives to traditional statistical methods, but whether they are an
improvement of the former, is hotly debated in the forecasting circles.

The real estate sector is characterized by its speed and elasticity in responding
to market changes, and therefore its embodiment of the prevailing state of the
economy (Zheng et al., 2024). Volatility in the economy is often reflected in
the real estate sector and fluctuations in the latter are often an indication of the
same in the former (Nazlioglu et al., 2016). However, while frequent, daily real
estate data are relatively accessible, the same cannot be said for gross domestic
product (GDP) data as a traditional indicator of economic activity (Nielsen,
2019). Therefore, forecasting of real estate data is strategic in that it provides
insight into broader economic data, and somewhat of an economic forecast by
proxy (Alola, 2021). This study is useful in forecasting the real estate sector
more accurately and also providing more timely and accurate indications of
broader economic activity than would be the case with more traditional
indicators. The primary goal of this research is to comparatively evaluate and
determine which forecasting technique is more suitable for predicting real estate
performance during COVID-19 as a market crisis period, based on higher
forecasting accuracy and fewer forecasting errors. This paper contributes to the
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ongoing debate on the effectiveness of ML models as superior alternatives to
traditional statistical models in times of crisis, and in particular, the long short-
term memory (LSTM) model versus the autoregressive integrated moving
average (ARIMA) model. While much related work exists on the comparison
of the LSTM and ARIMA models in forecasting, fewer studies are found on
this same comparison during periods of economic crisis, and even less in the
context of South Africa (SA).

The traditional econometric techniques for forecasting time series data are the
popularly known autoregressive (AR) and moving average (MA) models. These
have evolved over time into several variants for forecasting univariate and
multivariate time series data (Hamilton, 2020). For univariate data, variants of
the AR and MA models include: the autoregressive moving average (ARMA),
ARIMA, seasonal ARIMA (SARIMA), ARIMAX, and seasonal ARIMAX
(SARIMAX) models (Guidolin and Pedio, 2018). Likewise, for multivariate
econometric time series models, the AR and MA model frameworks are
extended through models such as the vector autoregression (VAR) and vector
autoregressive moving average (VARMA) models (Guidolin and Pedio, 2018).
These models are especially useful for forecasting and understanding the
dynamic interrelationships among multiple time series, under the assumption
that historical linear dependencies among variables can inform future outcomes
(Vishwas and Patel, 2020). For example, investors of real estate may base their
future purchases on the recent past. In such a case, higher house or rental prices
(or similar trends in the supporting data) may trigger additional investment into
real estate, whereas lower prices may trigger the opposite. In this case, the MA
and AR models would prove to be ideal forecasting tools (Samadani and Costa,
2021).

ML methods tend to be built on statistical techniques so a complete split or
differentiation between the two is often infeasible (Cerqueira et al., 2019).
Nonetheless, ML forecasting techniques rely on the ability of computers to
learn from data by developing algorithms through trial and error, and then
forecast depending on this process (Makridakis et al., 2018). However, despite
the recent attention, such methods are still not well established in the forecasting
literature (Cerqueira et al., 2019). These models are particularly beneficial for
the analysis of complex and non-linear data owing to their neural network
design; a simulation of the human brain which can handle the same complex
process of logic and computation (Pal and Prakash, 2017; Brownlee, 2018).

The main objective of this research paper is to comparatively evaluate and
determine which forecasting technique is more suitable for predicting the
performance of the listed real estate market of SA during periods of economic
crisis, specifically the COVID-19 pandemic. Within this context, performance
refers to return levels derived from market prices rather than volatility or risk
measures. While real estate market volatility is a commonly studied indicator
of uncertainty, this paper focuses on the directional forecasting of real estate
returns. To achieve this, we compare the predictive accuracy of the ARIMA
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model, a classical time series technique, and the LSTM model, a deep learning
method designed for capturing complex temporal patterns. By clarifying the
distinction between volatility modelling and return forecasting, we position the
study within the broader discussion on selecting appropriate forecasting tools
during high-uncertainty periods in emerging property markets. To this end, the
research study is structured into the following sections. Section 2 presents the
literature review and discusses related work. Section 3 explores empirical
studies on the ARIMA and LSTM models. In Section 4, an introduction and a
description of the data are provided, and the methodology is discussed. In
Section 5, the results are presented, while the findings are summarized in
Section 6. Finally, the conclusion and directions for future research are found
in Section 7.

This study contributes by advancing the field of real estate forecasting in three
key ways: (1) a rare empirical comparison between the ARIMA and LSTM
models is done to examine listed real estate performance during a crisis period,
specifically the COVID-19 pandemic in SA, an underrepresented context in the
literature; (2) high-frequency daily data are leveraged to improve predictive
resolution of the models, thus addressing calls in the literature for more granular
real estate modelling; and (3) the often-assumed superiority of ML models is
challenged by demonstrating that ARIMA can outperform LSTM in settings
with relatively limited complexity and sample size. These contributions help to
refine model selection considerations for researchers and practitioners who are
working with financial and real estate time series, particularly in emerging
markets and crisis conditions.

2. Literature Review

As a modelling technique, time series analyses have a proven track record of
use in different professions and disciplines, such as science, business,
economics, finance health, media, meteorology, and even military studies
(Nielsen, 2019). The wide acceptance of this modelling tool is largely due to its
relevance and versality in practical applications as well as its reliance as a
scientific basis for predictions. As a veritable modelling tool, the end goal of
time series analyses is borne out of the question of causality, which seeks to
establish how past data trends and patterns can predict the future direction of a
given data set (Nielsen, 2019; Vishwas and Patel, 2020). This ultimate concern
and general applicability of time series models explicate the criticality of the
forecasting accuracy of time series models. Hence, it is no surprise that several
time series analysis models have evolved over the years in an attempt to
constantly improve forecasting accuracy.

Until recently, forecasting time series data have been synonymous with
econometric models with roots that can be traced to the AR and MA models.
Notably, among these models is the ARIMA model that has long dominated the
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forecasting domain of the econometrics and statistics discipline. While the
ARIMA model has shown laudable predictive prowess in forecasting simple
and linear time series problems, there has been empirical evidence that shows
the limitations of the ARIMA model. For instance, several studies have noted
the shortcomings of the ARIMA model in non-linear time series problems
(Wang et al., 2018; Nassar et al., 2020). Likewise, some studies have observed
that ARIMA models are inadequate in predicting time series data over a long
run horizon (Brownlee, 2018; Kazemzadeh et al., 2020). These constant
concerns have queried the long-term relevance of traditional econometric
models especially in the light of advancements in artificial intelligence and ML
forecasting techniques.

In recent times, ML techniques, especially deep learning algorithms, have been
developed to address the shortcomings of traditional econometric forecasting
models such as the ARIMA. Notable among these techniques is the LSTM
model, which is an advanced form of recurrent neural networks (RNNs) used
in deep learning (Rosinus, 2025). As a modern alternative forecasting model,
LSTM networks are remarkably efficient in dealing with a number of
forecasting problems as they are capable of avoiding vanishing gradient issues,
thus recalling information over a long sequence of time series, learning long
term dependencies and incorporating feedback connections (Jadon et al., 2021).
However, the LSTM model suffers from critical drawbacks such as long
computational time, higher memory usage for training, sensitivity to weight
initialization and the tendency to overfit data (Jadon et al., 2021). These
challenges of the LSTM model have raised doubts on its viability as a preferred
substitute for traditional and econometric models.

As a result of these doubts, several empirical studies have sought to evaluate
and compare the forecasting accuracy of both techniques by using different time
series datasets. Miswan et al. (2014) find that the ARIMA model is most
suitable when comparing the performance between the ARIMA and generalized
autoregressive conditional heteroskedasticity (GARCH) models to model and
forecast the volatility of Malaysian market properties and shares. However,
Adebiyi et al. (2014) note that ML techniques provide even better forecasting
accuracy for predicting American stocks when compared to the ARIMA.
Particularly during the COVID-19 pandemic, researchers appear to have
increasingly opted for ML techniques in analyzing financial and real estate data.
They include, among other researchers, Saravagi et al. (2021), who employ the
LSTM model to predict the stock prices of selected companies during 2020 in
India; as well as Grybauskas et al. (2021) who use ML techniques to analyze
real estate market big data for Vilnius and Lithuania during the first wave of the
COVID-19 pandemic. This is in comparison to the few who have opted to
forecast financial and real estate data through traditional time series
methodologies during COVID-19 (Zheng et al., 2024).

There appears to be limited related work in SA, in particular where domestic
real estate data are forecasted with both models. However, data from other
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sectors may have similar characteristics to real estate data during crisis periods,
such as fluctuation and non-linear trends (Zhang et al., 2022) and therefore, may
shed some light. Zambezi (2021) forecasts social unrest incidents in SA by
comparing ARIMA and LSTM modelling, and daily non-linear and irregularly
fluctuating social data between 2002 and 2017. The study finds that complex
multivariate social data on social unrest incidents is even better predicted by
using LSTM models. Similarly, Essa et al. (2021) use 20 million lightning
observations and find that the LSTM model is more effective at forecasting
lightning data in SA than the ARIMA model. Lightning data are also
characteristically nonlinear and dynamic in nature. The LSTM model appears
to perform more efficiently in data with similar characteristics in the region.
The model also appears to be more effective with more voluminous (big) data.

Existing research shows that there is no real consensus in whether ML
techniques or traditional time series modelling are better for forecasting data,
which leads to the proposition that the choice of the model may need to be
determined by context, data size, and the nature of the data. For example,
Makridakis et al. (2018) contend that there is little objective evidence available
on the relative performance of ML techniques as a standard forecasting tool
compared to traditional statistical methods. This conclusion is based on a
forecast of 1045 monthly time series used in the M3 Competition, in which
eight traditional methods, including the ARIMA and seven other statistical
models are compared to the LSTM and nine other ML models by way of
forecasting accuracy. They conclude that traditional statistical methods
systematically outperform ML methods in this regard.

In response, Cerqueira et al. (2019) contend that the relative predictive
performance of ML methods improves with larger sample sizes. They argue
that the analysis in Makridakis et al. (2018) is biased as their dataset is too small
for ML models to perform at their optimum. Therefore, the conclusions of the
study are deemed inconclusive for generalization purposes.

Siami-Namini and Namin (2018) show that an increase in data size enhances
the accuracy of the results when they compare the accuracy of the ARIMA
model to LSTM model in forecasting twelve financial and economic time
series, which range from 368 to 1,698 observations (one being real estate or
housing data). The results greatly point to the superiority of the LSTM model
over the ARIMA model. However, Siami-Namini and Namin (2018) only test
the results by using the root mean square error (RMSE) as the performance
metric (and no other metric) to determine the accuracy of the prediction and
evaluate the forecasts. Even so, not all ML methods appear to be equal. In
analyzing the performance of LSTM neural networks for nowcasting (where
current or near current variables are estimated) during the COVID-19 crisis,
Hopp (2021) notes that LSTM neural networks are more effective as they
contain a time-based element, which traditional ML techniques (traditional
feed-forward networks such as back-propagation neural networks (BPNNs) and
Elman’s RNN (ERNN) lack. He finds that when compared to a dynamic factor
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model (DFM) in nowcasting global merchandise export values and volumes
and global services exports, LSTM performs better. He also finds LSTM to
have had more gradual forecasting changes. Consequently, LSTM models
produce superior predictions in nowcasting.

Aladag et al. (2009) use a hybrid model of ARIMA and ERNN to find an
optimal model to model the non-linear data of Canadian Lynx. They find that
the proposed hybrid approach has the highest forecasting accuracy, compared
to forecasting by using either method alone. Likewise, Merh et al. (2010)
present a comparison between the hybrid approaches of ANN and ARIMA for
Indian stock trend forecasting with many instances of the ARIMA predicted
values shown to be better than those of the artificial neural network (ANN)
predicted values in relation to the actual stock value. Similarly, Lee et al. (2008)
compare the performance of ARIMA versus ANN models in forecasting the
Korean Stock Price Index and find the former to generally provide more
accurate forecasts than the BPNN model.

Table 1 provides a summary of the most related studies. Where the ARIMA and
LSTM models are directly compared with analyzed economic and financial
data, more studies are in favor of the use of the LSTM model by virtue of the
results of the forecast error estimators. These include Siami-Namini and Namin
(2018), and Hopp (2021), (2022). Two other studies compare other ML
methods to the ARIMA model and find them superior including Adebiyi et al.
(2014) and Cerqueira et al. (2019).

Table 1 An Overview of the Most Related Works
Reference Method Data Region Contribution
Hopp (2022) LSTMvs  Global Global LSTM models are
DFM merchandise better at

export values
and volumes,

and global changes than DFM
services models when
exports (2020 considering mean
Q2 t02021 Q2). absolute and root

9 quarterly mean square errors.
datasets with 4 LSTM models are
observations/46 more effective as
monthly they contain a

datasets with
15 observations
(estimated)

nowcasting and
gradual forecasting

time-based
element, when
compared to
traditional feed
forward networks
(traditional neural
networks).

(Continued...)
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(Table 1 Continued)

Reference Method Data Region Contribution
Hopp (2021) LSTMvs  Global Global LSTM models are
DFM merchandise better at
and services nowcasting and
trade (2016 - gradual forecasting
2019). 101 changes than DFM
monthly models when
datasets with considering mean
48 absolute and root
observations/13 mean square errors.
quarterly LSTM models are
datasets with more effective as
16 observations they contain a
(estimated) time-based
element, when
compared to
traditional feed
forward networks.
Cerqueira et ARIMA 90 univariate N/A ML methods
al. (2019) and seven  time series of improve their
other 1000 relative predictive
statistical ~ observations performance as the
models each in various sample size
vs. LSTM  sectors increases.
and nine including
other ML  healthcare,
models physics,
economics.
Various
frequencies,
incl. daily,
monthly, etc.
Makridakis et ARIMA 1045 monthly N/A Traditional
al. (2018) and seven  (micro, statistical methods
other industry, systematically
statistical  macro, finance, outperform ML
models demographic, methods
vs. LSTM  other) time
and nine series used in
other ML  the M3
models Competition
with an
average,
minimum, and
maximum
number of
observations

per time series
of 118, 66, and
144,
respectively.

(Continued...)
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Reference Method Data Region Contribution
Soy Temiiret ARIMA,  Monthly Turkey  The hybrid model
al. (2018) LSTM housing sales has better

and in Turkey, predictive power
hybrid from January than ARIMA and
models 2008 — April LSTM models
2018. 124- separately,
observations. however the
ARIMA model
produces better
results than the
LSTM model.
Siami- ARIMA Financial and USA, Deep learning-
Namini and vs LSTM  economic Hong based algorithms
Namin (RMSE) timeseries Kong, such as LSTM
(2018) monthly (incl. Japan outperform
housing data), traditional-based
ranging from algorithms such as
368 to 1,698 ARIMA model.
observations
(Housing data
368
observations)
(estimated)
Adebiyietal. Machine  Daily NYSE USA Machine learning
(2014) learning stock prices techniques provide
(ANN) (Dell stock better forecasting
ARIMA index) from 18 accuracy for
August 1988 — American stocks
25 February
2011. 5679
observations.
Merh et al. Hybrid India Many instances of
(2010) approach ARIMA predicted
es of values shown to be
ANN better than those of
versus the ANN predicted
ARIMA values in relation
to actual stock
value
Lee et al. ARIMA Korea The ARIMA
(2008) versus model generally
BPNN provides more

accurate forecasts
than the BPNN
model used.
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No conclusive distinction can be made in respect of the data size between the
three financial and economic studies in favor of LSTM models versus the
remaining two in favor of the ARIMA model, as those in favor of LSTM
generally range from four observations over the COVID-19 period (Hopp,
2022) to 1,698 in more stable times (Siami-Namini and Namin, 2018), while
the two in favor of ARIMA modelling generally range from 66 observations to
144. However, both Cerqueira et al. (2019) and Adebiyi et al. (2014) include
observations in excess of 1,000 (1,000 and 5,679, respectively) and both favor
ML methods. This may suggest, as Cerqueira et al. (2019) advocate, that ML
methods improve the relative predictive performance as the sample size
increases. Nonetheless, all studies with observations in excess of 500 appear to
be in favor of ML forecasting in general, and in one case (Siami-Namini and
Namin, 2018), LSTM in particular. Studies in favor of ARIMA modelling
appear to have smaller datasets; however, more research is required to reach a
conclusion.

Even less conclusive is the fact that few studies exist that compare both methods
(LSTM and ARIMA) to determine whether the superiority of the model can be
influenced by other factors such as the region where the data are sourced, its
sector, or even whether the data are sourced from periods of economic crisis.
However, studies in other sectors (social data, scientific data) appear to suggest
that LSTM models are more suited for forecasting more complex, multivariate
data (Essa et al., 2021; Zambezi, 2021a), while ARIMA models are best suited
for predicting univariate linear time series data.

In summary, the jury is still out on the superiority of ML techniques when
compared to traditional statistical models for the estimation of financial and real
estate data; however, the literature and existing empirical studies appear to
support several mixed conclusions. The first is that of all the traditional
statistical models, the ARIMA model appears to be most suitable for volatile
data (Miswan et al., 2014). Moreover, the ARIMA model has performed more
efficiently than traditional feed forward neural networks such as the ERNN and
BPNN models (not LSTM models) (Lee et al., 2008).

Secondly, the literature points to the superiority of neural networks over
traditional statistical models when estimating nonlinear data (such as the
financial and real estate data used in this study) (Adebiyi et al., 2014). Of all
the neural networks, LSTM models also appear to have a better performance
due to their temporal component, which other traditional feed forward networks
do not have (Essa et al., 2021; Zambezi, 2021a). Therefore, of all the neural
networks, the literature points to LSTM as the most efficient for the study in
question. Moreover, empirical studies point to increasingly better performance
of LSTM models as datasets increase in size. As sample sizes decline,
traditional statistical models provide a better forecasting performance
(Cerqueira et al., 2019).
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Thirdly, empirical studies and the literature suggest that the type of data may
influence the suitability of the model. Fewer errors have been produced in
empirical studies with LSTM over ARIMA models when forecasting
multivariate, volatile data, whereas fewer errors have been produced by
ARIMA over LSTM models when forecasting univariate data. Finally, hybrid
models, those which are a cross between ML and traditional statistical models,
are more efficient than either alone, given that they both have limitations.
Notably, there appears to be negligible related work (apart from Hopp (2021))
based on a comparison of the performance of both models particularly during
crisis periods in particular. Zhang et al. (2022) confirm the uniqueness of crisis
data; however, Hopp (2021) finds no difference in the preference for LSTM
over the DFM whether pre- or post- COVID-19 crisis period.

Therefore, the literature and related empirical work have not reached a
consensus. However, there is some evidence that suggests the ARIMA models
provide the best statistical tools for estimating volatile real estate data, while
the LSTM models appear to provide the best ML tools for forecasting the same,
and ultimately, the latter perform relatively better as the sample size increases.

3. Methodology

3.1. Data and Sample Period Description

The study wuses the daily prices of the Financial Times Stock
Exchange/Johannesburg Stock Exchange (FTSE/JSE) South Africa Listed
Property Index (J253). Specifically, the use of daily data is justified as it enables
the model to capture abrupt, short-term shifts in market behaviors that are often
smoothed over in lower-frequency datasets. This is particularly important in
periods of crisis where price sensitivity and market reactivity are heightened.
Furthermore, this dataset comprises low, high, opening, and closing prices as
well as the volume of daily prices. For the purpose of this study, the closing
prices of the South African listed property index are adopted as the benchmark
measure of the listed property index performance to ensure consistency. While
listed properties are unique in their business and investment objectives, as they
focus on real estate and a steady stream of income, the SA listed property index
(J253) is particularly critical as it enlists only the top 20 liquid real estate
companies on the JSE.

More so, the FTSE/JSE SA Listed Property Index (J253) is selected as the focus
of this study because it serves as a key benchmark for the performance of the
listed real estate sector in SA. This index includes the most actively traded and
liquid real estate investment trusts (REITs) and property stocks on the
Johannesburg Stock Exchange, thus offering a representative and consolidated
view of investor sentiment and market trends within the property asset class. As
a subcomponent of the broader equity market, the J253 is particularly sensitive
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to macroeconomic shocks and interest rate changes, thus making it an ideal
candidate for assessing the responsiveness and forecasting accuracy of financial
models during crisis periods. Additionally, although the South African listed
property market remains well-established and institutionally mature, it still
operates within an emerging market context which is characterized by
volatility, regulatory shifts, and unique structural dynamics. This duality
enhances the value of the index as a test case for forecasting models intended
to inform both investment decisions and policy-making in similar economic
environments. Furthermore, the data are retrieved from the Integrated Real-time
Equity System (IRESS) Research Domain database. The sample period for this
study is from January 2, 2015, to July 8, 2021. This timeframe covers both the
pre-COVID-19 and COVID-19 periods, thus providing sufficient and robust
data to evaluate the impact of the pandemic in our analysis. Hence, a total of
1,628 observations are obtained and considered for the purpose of this research
inquiry. The subsequent section clarifies the adopted methodology for the
research study.

3.2. Model Specifications

3.2.1 ARIMA Model

The ARIMA model, which is also known as the Box-Jenkins model, is a
generalized form of the ARMA model that includes integrated components (Pal
and Prakash, 2017). These integrated components are crucial when dealing with
datasets that are non-stationary, as the integrated component of the ARIMA
model helps to transform non-stationary data into a stationary form. This is
accomplished by the ARIMA model which applies differencing on the time
series data one or more times to eliminate the non-stationarity effect (Pal and
Prakash, 2017; Nielsen, 2019).

The ARIMA model is denoted by (p, d, and q), which represents the AR, MA
and the differencing components. The d component which distinguishes the
ARMA model from the ARIMA model, aims to de-trend the signal to make
time series data stationary and suitable for forecasting purposes (Pal and
Prakash, 2017). This is why the ARIMA model is more widely preferred and
utilized for forecasting and academic research than other time series models
such as the AR, MA and ARMA models (Nielsen, 2019).

Using the ARIMA model for forecasting, the future value of a defined variable
can be determined via the use of a linear function that contains both past
observations as well as random errors as expressed below:

Ye=Cta1Yeq + @Yo+t apVept 0181 + 0605 + -

+ 0,6 q + & (0

or equivalently by using:
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1- Z 4L | (1 - L)dy, = (1 + Z HL-Li> £, 2
i=1
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where L is a lag operator, y, is the actual value (i.e. price of listed property) at
time t, & is a random error at t, ¢ is the intercept or constant, 6; (i =
1,2 ...9),q;(j = 1,2, ..p) are the model parameters, and q and p are
integers and often referred to as the MA and AR orders of the model,
respectively. The assumption regarding the random errors &, is that they are
identically and independently distributed with a mean zero and constant
variance of g2,

Steps to ARIMA Modelling

Using the ARIMA methodology, ARIMA modelling follows a three-step
iterative approach which involves identification of the model variables,
estimation of the parameters and application of diagnostic tests to evaluate and
ascertain the optimal parsimonious model from a variety of different ARIMA
models (Olson and Wu, 2017).

Stationarity Test

In the context of this study, we first visualize the time series dataset to determine
whether the dataset is stationary in order to commence the ARIMA modelling
process We then perform preliminary tests for both seasonality and stationarity
of our times series data by using natural logarithm transformation and
differencing techniques. If the dataset is non-stationary, we apply differencing
to the time series to enforce stationarity. This is illustrated in Figure 1.

Autocorrelation and Partial Autocorrelation Functions

Upon stationarity of the dataset, we determine the optimal parameters to be
estimated by our model. To this end, we apply both the autocorrelation function
(ACF), and partial autocorrelation function (PACF) to determine the best order
of our ARIMA model. This is presented in Figure 2, which shows the natural
logarithm transformed dataset after first differencing and the suitability of the
data for time series modeling.

Model Diagnostic Checks

Thereafter, we express the different series of our ARIMA model as well as their
estimated parameters (@, 8 and ¢) by using the maximum likelihood method
and the assumption that the error terms are independent and normally
distributed. Thus, our log-likelihood function is expressed as:

logL (a,0,0%) = —glog(chz) - Z e?(a,0)/20? 3)
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Thereafter, we build our time series model and make predictions based on the
optimal ARIMA model.

Figure 1 Closing Price Changes (July 1, 2019, to July 1, 2020): A)
before Differencing, and B) after Natural Log
Transformation and Differencing

A

Closing Price

2016 2017 2018 2019 2020 2021
Time (days)

0.1

0.05

—0.05

Closing Price

-0.1
—-0.15
2016 2017 2018 2019 2020 2021
Time (days)

Figure 2 ACF and PACF of Lagged Time Series after First Order
Differencing

ACEF for Differenced Series PACEF for Differenced Series
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As presented in Table 2, model diagnostic checks are performed to determine
the most parsimonious- as opposed to complex- model, as well as the goodness
of fit of each one by estimating the relative prediction accuracy or error for each
ARIMA model variation, with the use of the six measures as listed. In each
case, where the value of the measure is the smallest, this is considered the best
fitting and most parsimonious variation of the ARIMA model. All but ARIMA
(1,1,3), which was selected twice, were selected by only one measure if at all,
and therefore ARIMA (1,1,3) is selected as the model for forecasting.

Furthermore, the choice of the ARIMA (1,1,3) specification is informed by a
rigorous model selection process based on widely accepted criteria such as the
Akaike information criterion (AIC) and Bayesian information criterion (BIC),
both of which favor this configuration. Additionally, this model shows superior
performance across most forecasting error metrics, including the mean absolute
error (MAE) and mean absolute percentage error (MAPE). While several
alternative ARIMA configurations are estimated, the (1,1,3) model consistently
outperforms the others in both in-sample fit and out-of-sample forecasting
accuracy. This approach aligns with that of Stevenson (2007) who emphasizes
the importance of balancing parsimony with predictive accuracy in ARIMA
model selection, particularly in real estate applications where overfitting can
distort inference. Accordingly, the chosen model reflects both empirical
robustness and theoretical soundness.

Table 2 Evaluation of ARIMA Models

Model AIC BIC ME RMSE MAE MAPE
ARIMA  -7889.31 -7873.51 -0.250 6.287  4.256*  0.869*
lefz%fwl/l -7888.72 -7867.65 -0.255 6.284*  4.261 0.869
(AII’Q%I,\/IZA -7919.55% -7893.21* -0.224 6.371 4.333 0.881
(All’{%f\/fz -7914.73 -7883.13 -0.234 6.369 4.331 0.880
(All’{%f\/ig -7907.16 -7886.09 -0.257*  6.318 4315 0.876
(AZI’{%I,\/IK -7907.74 -7881.40 -0.230 6.317 4314 0.877
(AZI’{%I,\/IZA -7917.22 -7885.62 -0.225 6.371 4.340 0.882
(2,1,3)

ARIMA  -791845  -7881.58  -0.223 6374 4348  0.883
2.1,4)

Notes: * indicates the lowest value in each row.
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3.2.2 LSTM Model

LSTM networks are a type of RNN designed to handle the vanishing gradient
problem that plagues traditional RNNs (Nielsen, 2019). LSTM has memory
cells that allow information to be remembered over a longer period of time, thus
making it suitable for tasks such as language modeling, speech recognition, and
sequential prediction. An estimated LSTM model is a pre-trained LSTM model
that has been fine-tuned on a specific task with a dataset. The parameters of the
model have been estimated or trained from data to minimize a loss function that
measures the difference between the predictions and the actual output. This
fine-tuning process allows the model to make predictions for the specific task
with high accuracy (Gridin, 2021).The choice of using the LSTM model over
other ML models is largely due to its strong capacity to learn and retain long-
term dependencies in sequential data, a property particularly relevant to real
estate time series where historical price patterns often influence future trends.
Compared to other deep learning architectures such as convolutional neural
networks (CNNs), which excel in spatial data tasks, or gated recurrent units
(GRUs), which are a simplified version of LSTM at the cost of nuanced
memory retention, LSTM networks provide a more robust framework for
modelling temporal dynamics. Given the research aim to forecast time-
dependent financial performance, LSTM is deemed the most suitable among
the neural network alternatives for capturing the intricate, time-lagged
relationships found in daily real estate market data.

In addition to this, there are several reasons why an LSTM model may be
selected for time series forecasting. First, an LSTM model is designed to handle
long-term dependencies in time series data, where the current value of the time
series depends on values from many time steps ago (Bianchi et al., 2017).
Secondly, an LSTM model can handle multiple input features, which makes the
model well-suited for time series data that involve multiple related variables
(Gridin, 2021). Thirdly, an LSTM model can handle missing or noisy data by
using gates to control the flow of information in the network (Pal and Prakash,
2017). Lastly, an LSTM model is capable of modeling non-linear relationships
between the input and target variables, which make this model well-suited for
time series data that exhibit non-linear patterns or trends (Lazzeri, 2020).

Steps Involved in LSTM Model Estimation and Training

To build an ML (LSTM) model for forecasting with Python, a programming
language, this study follows a 5- step approach that involves: data
preprocessing, building the model architecture, and compiling, training, and
evaluating the model (Brownlee, 2018; Korstanje, 2021).

Data preparation

To commence the analysis, the real estate data are preprocessed by using a
normalization technique that utilizes the scikit-learn preprocessing library and
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a classical data transformer to scale each data feature into transformed intervals
between 0 and 1 (Brownlee, 2018; Korstanje, 2021).
- Y,—-Y,;
Yt — t min ( 4)
Ymax - Ymin

Where

Ymin = t—ql%nN Y

e = 1025, Y

Y, € [0,1] are the scaled values of Y;, N is number of observations, and Y is the
original data.

This process helps to rescale datapoints into manageable weight ranges that are
stable and less prone to ML errors. To effectively utilize the LSTM algorithm
for prediction, the study utilizes real estate market data features including
opening, high, low and closing prices, volume and returns that are considered
over a 5S-window period from January 5 to 9, 2015. The last 5 values of the data
features are used to predict the next closing price and squared return. The data
before normalization are listed in Table 3 and post normalization in Table 4.

Table 3 Data before Normalization

Opening High Low Closing
Date Price Price Price Price Volume  Returns
2015-01-05  593.73 594.18 589.51 589.99 11,411,264  -0.00630
2015-01-06  589.99  594.29 587.74  593.63 14.818,142  0.00617
2015-01-07  593.63 594.39 590.17 592.85 15,017,394  -0.00131
2015-01-08  592.85 600.82 592.22 599.19 21,304,403  0.01070
2015-01-09  599.19  601.56 597.29  600.74 18,151,556  0.00258

Table 4 Data post Normalization

Date Open High Low Close Volume Returns
2015-01-05 0.79745 0.78745 0.80801  0.78995  0.00306  0.56446
2015-01-06  0.78995  0.78768  0.80445  0.79726 0.00619  0.60871
2015-01-07  0.79726  0.78789  0.80934  0.79569 0.00637  0.58216
2015-01-08 0.79569  0.80105 0.81347  0.80842 0.01214  0.62476
2015-01-09 0.80841 0.80256  0.82368  0.81153  0.00924  0.59599
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Model architecture design

Building the architecture of the model involves determining the number of
layers and hidden units, type of activation functions, etc. that will be used in the
LSTM model (Brownlee, 2018; Korstanje, 2021). This study considers a 6-2
LSTM network topology, where each number corresponds to the number of
neurons in a given layer and the last layer corresponds to the prediction (we
predict the closing price and squared returns at the same time). We also use a
rectified linear unit (ReLLU) as an activation function (for cell and hidden states)
and sigmoid as a recurrent activation function (for activating the
input/forget/output gate) in each layer. The ReLU is a popular activation
function used in deep learning models, including LSTM models. The ReLU
activation function is defined as y = max(0, x), where x is the input for the
activation function and y is the output. The motivation for using the ReLU
activation function is that it introduces non-linearity into the model, thus
allowing the model to learn more complex relationships between the inputs and
outputs.

Also, to minimize overfitting errors, we use the dropout technique and bias
regularizer. Using the drop-out technique, we define the dropout level = 0.12
(i.e., it drops out the cell and hidden states in LSTM) for each layer and
recurrent dropout level = 0.02 (i.e., it drops out the input/update gate in LSTM).
Likewise, we also use the bias regularizer in the L2 form, i.e., the cost function
which contains a penalty term 0.2 X Y. b?, where b; is bias. The purpose of bias
regularization is to prevent overfitting and improve generalization by adding a
penalty to the loss function during training.

Model compilation

The compilation of the LSTM model involves specifying the optimizer, loss
function, and evaluation metrics to be used during training (Castro et al., 2022).
The loss function measures the difference between the actual and predicted
values and is used as a guide for updating the model parameters during training.
Common loss functions for time series forecasting include the mean square
error (MSE), mean absolute error (MAE), and mean absolute percentage error
(MAPE). However, only the MSE is considered in this study as it is a commonly
used loss function for regression problems, including time series forecasting
with LSTM models. This is because the MSE measures the average squared
difference between the model predictions and the actual output.

Furthermore, the LSTM optimizer updates the model parameters based on the
gradient of the loss function. While common optimizers for LSTM models
include the stochastic gradient descent (SGD), and adaptive moment estimation
(Adam), and adaptive gradient algorithm (Adagrad) optimizers, this study
adopts the Adam optimizer as it calculates adaptive learning rates for each
weight and bias in a neural network, which helps the model to converge faster
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and more effectively compared to traditional gradient descent optimization
(Siami-Namini et al., 2018; 2019).

Lastly, the LSTM model is evaluated on several metrics to determine the
performance of the model on the validation or test data. The selected metrics
include the MAE, RMSE, and MAPE. Evaluating the model performance
across several benchmarks offers a robust assessment of the LSTM model for
forecasting purposes.

Model training

Training the model involves inputting the preprocessed data into the model and
training it over multiple epochs. During each epoch, the model processes the
data, makes predictions, and updates its parameters based on the loss and
optimizer (Korstanje, 2021; Castro et al., 2022). In a typical LSTM model
training process, the loss function, which in this case is the MSE, is calculated
after each epoch and used to update the model parameters. Over time, the model
continues to learn from the data and improves its predictions, thus leading to
smaller MSEs. However, it is important to monitor the validation loss, which is
calculated by using a separate validation set. The validation loss is used to
evaluate the performance of the model on new data and ensures that it is not
overfitting to the training data. If the validation loss increases while the training
loss continues to decrease, this may indicate that the model is overfitting to the
training data, and further steps may need to be taken to improve its
generalization performance. In general, a good model should have a decreasing
training loss and a stable or slightly decreasing validation loss as the training
progresses. This suggests that the model is improving its predictions on the
training data while still maintaining a good level of performance on new data.

In the context of this study, the loss function is determined after 13 epochs,
which is the smallest MSE that is closest to the validation loss as presented in
the loss function graph in Figure 3. During this training process, a total of 326
parameters (312 input parameters and 14 output parameters) are trained using a
batch size of 10. The root mean square propagation (RMSprop) algorithm is
used as the learning algorithm for the data at a learning rate of 0.01, and a
momentum rate of 0.0. Thus, the optimal LSTM model after 13 epochs is
further evaluated across several performance metrics.

Model evaluation

Evaluating the model involves using the validation set to evaluate the
performance of the model and ensure that it is not overfitting to the training data
(Gridin, 2021). This may involve calculating metrics such as accuracy,
precision, recall, etc. To evaluate the performance of the LSTM model, we split
all of the data into 2 sets: 90% of the data comprise the training set, while 10%
the testing set (we choose this split since in this case, the end point of the
training data is November 12, 2020, which means that the COVID-19 crisis
information is contained in the data). As presented in Table 5, the optimal
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LSTM model with the smallest MSE after 13 epochs is selected based on
several performance evaluation criteria, including the AIC, BIC, ME, RMSE,
MAE and MAPE.

Figure 3 LSTM Model Configuration
Loss function on train set (scaled data)

—— train loss

0.025 R
— validation loss

0.02
0.015
0.01

0.005

Evaluation of LSTM Model

Table 5 Performance Evaluation of LSTM Model

AIC BIC ME RMSE MAE MAPE
8410.43 23,710.66 4.4 5.91 6.23 2.14
4. Results and Discussion of Findings

Forecasting is performed with two different models, including the ARIMA
(1,1,3) as dictated by the AIC and BIC, as well as the LSTM model. To compare
these forecasts between models, the first 90% of the real estate data set are
reserved for training the models and the last 10% are used as the test data. This
split allows for inclusion of the initial onset of the COVID-19 crisis within the
training sample. Both models are trained with 90% of the data observations and
subsequently tested with the remaining data. Thereafter, the residuals of both
models are analyzed prior to comparing the forecasting performance of the
evaluated model.

Model Evaluation using Residual Analysis

The residual analysis is a common method for evaluating the performance of
time series models. The residuals are defined as the difference between the
observed and predicted values from the model. A good time series model should



Forecasting Real Estate Performance 495

have residuals that are not correlated and have constant variance and a zero
mean. As presented in Figures 4.1 and 4.2, after selecting a potential model and
estimating its parameters, diagnostic checks are performed with the basic
assumption that the residuals have white noise - are randomly distributed, a
mean of zero, and a constant variance. Furthermore, the Ljung-Box test is used
to check whether the residuals are not correlated. Upon testing, our Ljung-Box
statistics reveal that the chi-squared statistics=1.938, and the p-value = 0.7873,
thus, the null hypothesis of white noise being present is rejected. Also, it can be
observed that there is no residual correlation in the time series data set as all of
the series are within the boundaries. This is further depicted in the normal Q-Q
graph as all residuals approximately fall along the line. Therefore, this implies
that both our ARIMA (1,1,3) and LSTM models are good and statistically fit
for forecasting the real estate time series data.

Figure 4.1  Analysis of Residuals from ARIMA Model
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Figure 4.2  Analysis of Residuals from LSTM Model
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Forecasting Using Evaluated Models

Likewise, we evaluate and compare the ability of our optimal ARIMA (1,1,3)
and LSTM models to forecast South African real estate during the COVID-19
crisis by using a variety of performance metrics including the MSE, RMSE,
MAE and MAPE. The results of our forecasts are summarized in Table 6 and

graphically presented in Figure 4.3.

Table 6 ARIMA vs. LSTM model evaluation with forecasting

performance evaluation metrics

14

Model MSE RMSE MAE MAPE
ARIMA (1, 1, 3) -0.224 6.371 4.333 0.881
LSTM 4.40 5.91 6.23 2.14
Reduction in error rates 105.1% -7.8% 30.4% 58.8%

(LSTM-ARIMA) /
LSTM
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Table 6 shows that for all of the metrics except the RMSE, the ARIMA (1,1,3)
model performs more parsimoniously than the LSTM model, with values of -
0.224, 4.333 and 0.881 for the MSE, MAE and MAPE respectively. At these
values, the ARIMA model provides a 105.1%, 30.4%, and 58.8% reduction in
error rate for the ME, MAE and MAPE respectively, when its forecasting
performance is compared with those of the LSTM model. Conversely, the
LSTM model performs better according to the RMSE metric, at a value of 5.91
compared to the 6.371 of the ARIMA model, or a 7.8% reduction in error rate
by the LSTM compared to the ARIMA model. Based on 3 of the 4 metrics, it
can be concluded that the ARIMA model outperforms the LSTM model at
medium to high margins during the COVID-19 pandemic period.

Figure 4.3  Forecasting Using Evaluated Models
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Forecasts from LSTM
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The study estimates real estate performance by using closing prices as the
baseline. Estimations are repeated numerous times in order to reach realistic
values. The data appear to have significant enough reductions in error rates
when the ARIMA model is compared to the LSTM model, in order for the
superiority of the former to be established over the latter for the data in question.

The superior performance of the ARIMA (1,1,3) model over the LSTM model
in this study aligns with several empirical investigations that suggest traditional
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statistical models often outperform ML approaches under specific conditions.
For example, Lee et al. (2008), Merh et al. (2010) and Makridakis et al. (2018)
report that ARIMA models tend to deliver more accurate forecasts when
applied to datasets with shorter time spans, less complexity, and predominantly
linear characteristics. These subsisting conditions are present in this study,
which favors a univariate, moderate-sized dataset during the relatively brief
COVID-19 crisis period. In contrast, LSTM models are generally more
effective in handling large, multivariate datasets with complex nonlinear
patterns and longer temporal sequences, as evidenced by the findings of
Adebiyi et al. (2014), Cerqueira et al. (2019) and Hopp (2021), among others.

However, the mixed conclusions in the literature suggest that model superiority
is highly context-dependent and not generalizable across asset classes, sectors,
or data structures. Cerqueira et al. (2019) emphasize the inherent difficulty of
determining the precise volume of data needed for predictive tasks and note that
optimal model performance is influenced by the interplay among data
complexity, problem difficulty, and learning algorithm design. Further
supporting this premise, studies from other South African sectors, such as Essa
et al. (2021) and Zambezi (2021), indicate that LSTM models tend to
outperform ARIMA models in contexts with greater data complexity and larger
volumes of data. Accordingly, while the ARIMA model outperforms the LSTM
model based on the specific conditions of this study, it is important to note that
this may not hold across all forecasting scenarios or asset classes.

5. Conclusion

Based on the findings of our research, we do not find that the ML technique as
represented by the LSTM model has more accurate predictive capabilities,
despite expectations to the contrary from the literature and empirical studies,
particularly given the size of the data set in this study. Our findings indicate that
a traditional predictive technique as represented by the ARIMA model is more
robust, and a better predictive technique for forecasting the South African real
estate sector during the COVID-19 crisis. Hence, we conclude that traditional
statistical techniques can better forecast the South African real estate sector
during crises/ unforeseen shocks such as the COVID-19 pandemic due to their
robust nature. This finding indicates that the traditional econometric models
still have a role to play in forecasting financial data, despite the recent
development of ML models.

Given the findings in related work, however, we propose that the findings of
the study may have been different, given a larger data size or more complex
(e.g. multivariate) data. It is therefore recommended that the study is repeated
with a larger, more complex set of data, in order to stress-test the conclusion.
Also, it would be interesting to compare the forecasting performance of hybrid
models such as LSTM-ARIMA with non-hybrid models.
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Lastly, a notable limitation of this study is that the LSTM model is implemented
by wusing a single architecture configuration, without comprehensive
hyperparameter tuning. This decision is guided by the exploratory objective
nature of the study, and computational resource constraints, which require
extensive tuning beyond the scope of this initial investigation. Moreover,
similar approaches have been adopted in related studies, such as Adebiyi et al.
(2014) and Essa et al. (2021), which also employ fixed LSTM configurations
to benchmark performance against traditional models in financial and economic
forecasting tasks. While basic adjustments such as modifying the dropout rate
and number of training epochs through preliminary experimentation are
implemented, it is necessary to emphasize that systematic optimization
techniques, such as grid and random searches, or Bayesian optimization, are not
applied. Hence, given that deep learning models are highly sensitive to
hyperparameters, including the number of layers, neurons per layer, learning
rate, batch size, and activation functions, alternative configurations may have
produced improved forecasting accuracy. As such, the limited tuning in this
study may have contributed to the underperformance of the LSTM model
relative to the ARIMA model. Future research should apply robust
hyperparameter optimization strategies to more fully exploit the predictive
potential of LSTM models and explore the comparative performance of
alternative deep learning architectures such as GRUs and CNN-LSTM hybrids,
particularly in the context of real estate time series data.
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