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Machine learning (ML) methods, such as long short-term memory 
(LSTM) models, are increasingly proposed as alternatives to traditional 
statistical approaches for time series forecasting. However, given the 
speed of the real estate industry in providing data that reflect economic 
climates, there are few comparisons of ML techniques with statistical 
methods in the context of real estate data during crisis periods. The 
study investigates the predictive accuracy of the autoregressive 
integrated moving average (ARIMA) and LSTM models by using daily 
data from the Financial Times Stock Exchange/Johannesburg Stock 
Exchange South Africa Listed Property Index. Through a 
comprehensive analysis of 1628 observations from January 2, 2015, to 
July 8, 2021, the study finds that the ARIMA models produce fewer 
forecasting errors compared to the LSTM models during the COVID-19 
crisis. These findings suggest that traditional ARIMA models may be 
more efficient for forecasting volatile real estate data in crisis periods, 
although the results could vary with larger and more complex datasets. 
This research is crucial as it provides insights into the comparative 
performance of statistical and ML models, thus emphasizing the need 
for context-specific model selection in economic forecasting. 
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1. Introduction 
 
Over the years, time series forecasting has proven relevant as a predictive tool 
for improving decision making across various sectors such as the health, 
business, government, political, and technology sectors, and so on and so forth 
(Makridakis et al., 2018). Where sufficient data are available, time series 
analysis forecasting is beneficial for systematically and objectively predicting 
variations in data collected over time (Rhif et al., 2019). Despite these benefits, 
traditional forecasting time series data are beleaguered by several challenges, 
such as incomplete data, generalizations where conclusions are liberally 
inferred from single studies, challenges related to the choice of the right model 
and relevant performance measures to accurately predict a given dataset. In 
addition, where the data contain significant outliers, the accuracy or predictive 
power of time series analysis models is notably reduced. Finally, it is well 
known that traditional time series forecasting models are inadequate when 
calculating complex, nonlinear data (Cerqueira et al., 2019). Such methods 
therefore may not be sufficient when forecasting data during crisis periods. 
There is a constant need to improve predictive accuracy and reduce market 
volatility-induced forecasting errors in times of crises and uncertainties. To this 
end, machine learning (ML) techniques have been often presented as modern 
alternatives to traditional statistical methods, but whether they are an 
improvement of the former, is hotly debated in the forecasting circles. 
 
The real estate sector is characterized by its speed and elasticity in responding 
to market changes, and therefore its embodiment of the prevailing state of the 
economy (Zheng et al., 2024). Volatility in the economy is often reflected in 
the real estate sector and fluctuations in the latter are often an indication of the 
same in the former (Nazlioglu et al., 2016). However, while frequent, daily real 
estate data are relatively accessible, the same cannot be said for gross domestic 
product (GDP) data as a traditional indicator of economic activity (Nielsen, 
2019). Therefore, forecasting of real estate data is strategic in that it provides 
insight into broader economic data, and somewhat of an economic forecast by 
proxy (Alola, 2021). This study is useful in forecasting the real estate sector 
more accurately and also providing more timely and accurate indications of 
broader economic activity than would be the case with more traditional 
indicators. The primary goal of this research is to comparatively evaluate and 
determine which forecasting technique is more suitable for predicting real estate 
performance during COVID-19 as a market crisis period, based on higher 
forecasting accuracy and fewer forecasting errors. This paper contributes to the 
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ongoing debate on the effectiveness of ML models as superior alternatives to 
traditional statistical models in times of crisis, and in particular, the long short-
term memory (LSTM) model versus the autoregressive integrated moving 
average (ARIMA) model. While much related work exists on the comparison 
of the LSTM and ARIMA models in forecasting, fewer studies are found on 
this same comparison during periods of economic crisis, and even less in the 
context of South Africa (SA). 
 
The traditional econometric techniques for forecasting time series data are the 
popularly known autoregressive (AR) and moving average (MA) models. These 
have evolved over time into several variants for forecasting univariate and 
multivariate time series data (Hamilton, 2020). For univariate data, variants of 
the AR and MA models include: the autoregressive moving average (ARMA), 
ARIMA, seasonal ARIMA (SARIMA), ARIMAX, and seasonal ARIMAX 
(SARIMAX) models (Guidolin and Pedio, 2018). Likewise, for multivariate 
econometric time series models, the AR and MA model frameworks are 
extended through models such as the vector autoregression (VAR) and vector 
autoregressive moving average (VARMA) models (Guidolin and Pedio, 2018). 
These models are especially useful for forecasting and understanding the 
dynamic interrelationships among multiple time series, under the assumption 
that historical linear dependencies among variables can inform future outcomes 
(Vishwas and Patel, 2020).  For example, investors of real estate may base their 
future purchases on the recent past. In such a case, higher house or rental prices 
(or similar trends in the supporting data) may trigger additional investment into 
real estate, whereas lower prices may trigger the opposite. In this case, the MA 
and AR models would prove to be ideal forecasting tools (Samadani and Costa, 
2021). 
 
ML methods tend to be built on statistical techniques so a complete split or 
differentiation between the two is often infeasible (Cerqueira et al., 2019). 
Nonetheless, ML forecasting techniques rely on the ability of computers to 
learn from data by developing algorithms through trial and error, and then 
forecast depending on this process (Makridakis et al., 2018). However, despite 
the recent attention, such methods are still not well established in the forecasting 
literature (Cerqueira et al., 2019). These models are particularly beneficial for 
the analysis of complex and non-linear data owing to their neural network 
design; a simulation of the human brain which can handle the same complex 
process of logic and computation  (Pal and Prakash, 2017; Brownlee, 2018). 
 
The main objective of this research paper is to comparatively evaluate and 
determine which forecasting technique is more suitable for predicting the 
performance of the listed real estate market of SA during periods of economic 
crisis, specifically the COVID-19 pandemic. Within this context, performance 
refers to return levels derived from market prices rather than volatility or risk 
measures. While real estate market volatility is a commonly studied indicator 
of uncertainty, this paper focuses on the directional forecasting of real estate 
returns. To achieve this, we compare the predictive accuracy of the ARIMA 
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model, a classical time series technique, and the LSTM model, a deep learning 
method designed for capturing complex temporal patterns. By clarifying the 
distinction between volatility modelling and return forecasting, we position the 
study within the broader discussion on selecting appropriate forecasting tools 
during high-uncertainty periods in emerging property markets. To this end, the 
research study is structured into the following sections. Section 2 presents the 
literature review and discusses related work. Section 3 explores empirical 
studies on the ARIMA and LSTM models. In Section 4, an introduction and a 
description of the data are provided, and the methodology is discussed. In 
Section 5, the results are presented, while the findings are summarized in 
Section 6. Finally, the conclusion and directions for future research are found 
in Section 7. 
 
This study contributes by advancing the field of real estate forecasting in three 
key ways: (1) a rare empirical comparison between the ARIMA and LSTM 
models is done to examine listed real estate performance during a crisis period, 
specifically the COVID-19 pandemic in SA, an underrepresented context in the 
literature; (2) high-frequency daily data are leveraged to improve predictive 
resolution of the models, thus addressing calls in the literature for more granular 
real estate modelling; and (3) the often-assumed superiority of ML models is 
challenged by demonstrating that ARIMA can outperform LSTM in settings 
with relatively limited complexity and sample size. These contributions help to 
refine model selection considerations for researchers and practitioners who are 
working with financial and real estate time series, particularly in emerging 
markets and crisis conditions. 
 
 
2. Literature Review 
 
As a modelling technique, time series analyses have a proven track record of 
use in different  professions and disciplines, such as science, business, 
economics, finance health, media, meteorology, and even military studies 
(Nielsen, 2019). The wide acceptance of this modelling tool is largely due to its 
relevance and versality in practical applications as well as its reliance as a 
scientific basis for predictions. As a veritable modelling tool, the end goal of 
time series analyses is borne out of the question of causality, which seeks to 
establish how past data trends and patterns can predict the future direction of a 
given data set (Nielsen, 2019; Vishwas and Patel, 2020). This ultimate concern 
and general applicability of time series models explicate the criticality of the 
forecasting accuracy of time series models. Hence, it is no surprise that several 
time series analysis models have evolved over the years in an attempt to 
constantly improve forecasting accuracy. 
 
Until recently, forecasting time series data have been synonymous with 
econometric models with roots that can be traced to the AR and MA models. 
Notably, among these models is the ARIMA model that has long dominated the 
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forecasting domain of the econometrics and statistics discipline. While the 
ARIMA model has shown laudable predictive prowess in forecasting simple 
and linear time series problems, there has been empirical evidence that shows 
the limitations of the ARIMA model. For instance, several studies have noted 
the shortcomings of the ARIMA model in non-linear time series problems 
(Wang et al., 2018; Nassar et al., 2020).  Likewise, some studies have observed 
that ARIMA models are inadequate in predicting time series data over a long 
run horizon (Brownlee, 2018; Kazemzadeh et al., 2020). These constant 
concerns have queried the long-term relevance of traditional econometric 
models especially in the light of advancements in artificial intelligence and ML 
forecasting techniques. 
 
In recent times, ML techniques, especially deep learning algorithms, have been 
developed to address the shortcomings of traditional econometric forecasting 
models such as the ARIMA. Notable among these techniques is the LSTM 
model, which is an advanced form of recurrent neural networks (RNNs) used 
in deep learning (Rosinus, 2025). As a modern alternative forecasting model, 
LSTM networks are remarkably efficient in dealing with a number of 
forecasting problems as they are capable of avoiding vanishing gradient issues, 
thus recalling information over a long sequence of time series, learning long 
term dependencies and incorporating feedback connections (Jadon et al., 2021). 
However, the LSTM model suffers from critical drawbacks such as long 
computational time, higher memory usage for training, sensitivity to weight 
initialization and the tendency to overfit data (Jadon et al., 2021). These 
challenges of the LSTM model have raised doubts on its viability as a preferred 
substitute for traditional and econometric models. 
 
As a result of these doubts, several empirical studies have sought to evaluate 
and compare the forecasting accuracy of both techniques by using different time 
series datasets. Miswan et al. (2014) find that the ARIMA model is most 
suitable when comparing the performance between the ARIMA and generalized 
autoregressive conditional heteroskedasticity (GARCH) models to model and 
forecast the volatility of Malaysian market properties and shares. However, 
Adebiyi et al. (2014) note that ML techniques provide even better forecasting 
accuracy for predicting American stocks when compared to the ARIMA. 
Particularly during the COVID-19 pandemic, researchers appear to have 
increasingly opted for ML techniques in analyzing financial and real estate data. 
They include, among other researchers, Saravagi et al. (2021), who employ the 
LSTM model to predict the stock prices of selected companies during 2020 in 
India; as well as Grybauskas et al. (2021) who use ML techniques to analyze 
real estate market big data for Vilnius and Lithuania during the first wave of the 
COVID-19 pandemic. This is in comparison to the few who have opted to 
forecast financial and real estate data through traditional time series 
methodologies during COVID-19 (Zheng et al., 2024). 
 
There appears to be limited related work in SA, in particular where domestic 
real estate data are forecasted with both models. However, data from other 
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sectors may have similar characteristics to real estate data during crisis periods, 
such as fluctuation and non-linear trends (Zhang et al., 2022) and therefore, may 
shed some light. Zambezi (2021) forecasts social unrest incidents in SA by 
comparing ARIMA and LSTM modelling, and daily non-linear and irregularly 
fluctuating social data between 2002 and 2017. The study finds that complex 
multivariate social data on social unrest incidents is even better predicted by 
using LSTM models. Similarly, Essa et al. (2021) use 20 million lightning 
observations and find that the LSTM model is more effective at forecasting 
lightning data in SA than the ARIMA model. Lightning data are also 
characteristically nonlinear and dynamic in nature. The LSTM model appears 
to perform more efficiently in data with similar characteristics in the region. 
The model also appears to be more effective with more voluminous (big) data. 
 
Existing research shows that there is no real consensus in whether ML 
techniques or traditional time series modelling are better for forecasting data, 
which leads to the proposition that the choice of the model may need to be 
determined by context, data size, and the nature of the data. For example, 
Makridakis et al. (2018) contend that there is little objective evidence available 
on the relative performance of ML techniques as a standard forecasting tool 
compared to traditional statistical methods. This conclusion is based on a 
forecast of 1045 monthly time series used in the M3 Competition, in which 
eight traditional methods, including the ARIMA and seven other statistical 
models are compared to the LSTM and nine other ML models by way of 
forecasting accuracy. They conclude that traditional statistical methods 
systematically outperform ML methods in this regard. 
 
In response, Cerqueira et al. (2019) contend that the relative predictive 
performance of ML methods improves with larger sample sizes. They argue 
that the analysis in Makridakis et al. (2018) is biased as their dataset is too small 
for ML models to perform at their optimum. Therefore, the conclusions of the 
study are deemed inconclusive for generalization purposes. 
 
Siami-Namini and Namin (2018) show that an increase in data size enhances 
the accuracy of the results when they compare the accuracy of the ARIMA 
model to LSTM model in forecasting twelve financial and economic time 
series, which range from 368 to 1,698 observations (one being real estate or 
housing data). The results greatly point to the superiority of the LSTM model 
over the ARIMA model. However, Siami-Namini and Namin (2018) only test 
the results by using the root mean square error (RMSE) as the performance 
metric (and no other metric) to determine the accuracy of the prediction and 
evaluate the forecasts. Even so, not all ML methods appear to be equal. In 
analyzing the performance of LSTM neural networks for nowcasting (where 
current or near current variables are estimated) during the COVID-19 crisis, 
Hopp (2021) notes that LSTM neural networks are more effective as they 
contain a time-based element, which traditional ML techniques (traditional 
feed-forward networks such as back-propagation neural networks (BPNNs) and 
Elman’s RNN (ERNN) lack. He finds that when compared to a dynamic factor 



Forecasting Real Estate Performance     481 
 
model (DFM) in nowcasting global merchandise export values and volumes 
and global services exports, LSTM performs better. He also finds LSTM to 
have had more gradual forecasting changes. Consequently, LSTM models 
produce superior predictions in nowcasting. 
 
Aladag et al. (2009) use a hybrid model of ARIMA and ERNN to find an 
optimal model to model the non-linear data of Canadian Lynx. They find that 
the proposed hybrid approach has the highest forecasting accuracy, compared 
to forecasting by using either method alone. Likewise, Merh et al. (2010) 
present a comparison between the hybrid approaches of ANN and ARIMA for 
Indian stock trend forecasting with many instances of the ARIMA predicted 
values shown to be better than those of the artificial neural network (ANN) 
predicted values in relation to the actual stock value. Similarly, Lee et al. (2008) 
compare the performance of ARIMA versus ANN models in forecasting the 
Korean Stock Price Index and find the former to generally provide more 
accurate forecasts than the BPNN model. 
 
Table 1 provides a summary of the most related studies. Where the ARIMA and 
LSTM models are directly compared with analyzed economic and financial 
data, more studies are in favor of the use of the LSTM model by virtue of the 
results of the forecast error estimators. These include Siami-Namini and Namin 
(2018), and Hopp (2021), (2022). Two other studies compare other ML 
methods to the ARIMA model and find them superior including Adebiyi et al. 
(2014) and Cerqueira et al. (2019). 
 
Table 1 An Overview of the Most Related Works 

Reference Method Data Region Contribution 
Hopp (2022) LSTM vs 

DFM 
Global 
merchandise 
export values 
and volumes, 
and global 
services 
exports (2020 
Q2 to2021 Q2). 
9 quarterly 
datasets with 4 
observations/46 
monthly 
datasets with 
15 observations 
(estimated) 

Global LSTM models are 
better at 
nowcasting and 
gradual forecasting 
changes than DFM 
models when 
considering mean 
absolute and root 
mean square errors. 
LSTM models are 
more effective as 
they contain a 
time-based 
element, when 
compared to 
traditional feed 
forward networks 
(traditional neural 
networks). 

(Continued…) 
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(Table 1 Continued) 

Reference Method Data Region Contribution 
Hopp (2021) LSTM vs 

DFM 
Global 
merchandise 
and services 
trade (2016 - 
2019). 101 
monthly 
datasets with 
48 
observations/13 
quarterly 
datasets with 
16 observations 
(estimated) 

Global LSTM models are 
better at 
nowcasting and 
gradual forecasting 
changes than DFM 
models when 
considering mean 
absolute and root 
mean square errors. 
LSTM models are 
more effective as 
they contain a 
time-based 
element, when 
compared to 
traditional feed 
forward networks. 

Cerqueira et 
al. (2019) 

ARIMA 
and seven 
other 
statistical 
models 
vs. LSTM 
and nine 
other ML 
models 

90 univariate 
time series of 
1000 
observations 
each in various 
sectors 
including 
healthcare, 
physics, 
economics. 
Various 
frequencies, 
incl. daily, 
monthly, etc. 

N/A ML methods 
improve their 
relative predictive 
performance as the 
sample size 
increases. 

Makridakis et 
al. (2018) 

ARIMA 
and seven 
other 
statistical 
models 
vs. LSTM 
and nine 
other ML 
models 

1045 monthly 
(micro, 
industry, 
macro, finance, 
demographic, 
other) time 
series used in 
the M3 
Competition 
with an 
average, 
minimum, and 
maximum 
number of 
observations 
per time series 
of 118, 66, and 
144, 
respectively. 

N/A Traditional 
statistical methods 
systematically 
outperform ML 
methods 

(Continued…) 



Forecasting Real Estate Performance     483 
 
(Table 1 Continued) 

Reference Method Data Region Contribution 
Soy Temür et 
al. (2018) 

ARIMA, 
LSTM 
and 
hybrid 
models 

Monthly 
housing sales 
in Turkey, 
from January 
2008 – April 
2018. 124-
observations. 

Turkey The hybrid model 
has better 
predictive power 
than ARIMA and 
LSTM models 
separately, 
however the 
ARIMA model 
produces better 
results than the 
LSTM model. 

Siami-
Namini and 
Namin 
(2018) 

ARIMA 
vs LSTM 
(RMSE) 

Financial and 
economic 
timeseries 
monthly (incl. 
housing data), 
ranging from 
368 to 1,698 
observations 
(Housing data 
368 
observations) 
(estimated) 

USA, 
Hong 
Kong, 
Japan 

Deep learning-
based algorithms 
such as LSTM 
outperform 
traditional-based 
algorithms such as 
ARIMA model. 

Adebiyi et al. 
(2014) 

Machine 
learning 
(ANN) 
ARIMA 

Daily NYSE 
stock prices 
(Dell stock 
index) from 18 
August 1988 – 
25 February 
2011. 5679 
observations. 

USA Machine learning 
techniques provide 
better forecasting 
accuracy for 
American stocks 

Merh et al. 
(2010) 

Hybrid 
approach
es of 
ANN 
versus 
ARIMA 

 India Many instances of 
ARIMA predicted 
values shown to be 
better than those of 
the ANN predicted 
values in relation 
to actual stock 
value 

Lee et al. 
(2008) 

ARIMA 
versus 
BPNN 

 Korea The ARIMA 
model generally 
provides more 
accurate forecasts 
than the BPNN 
model used. 
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No conclusive distinction can be made in respect of the data size between the 
three financial and economic studies in favor of LSTM models versus the 
remaining two in favor of the ARIMA model, as those in favor of LSTM 
generally range from four observations over the COVID-19 period (Hopp, 
2022) to 1,698 in more stable times (Siami-Namini and Namin, 2018), while 
the two in favor of ARIMA modelling generally range from 66 observations to 
144. However, both Cerqueira et al. (2019) and Adebiyi et al. (2014) include 
observations in excess of 1,000 (1,000 and 5,679, respectively) and both favor 
ML methods. This may suggest, as Cerqueira et al. (2019) advocate, that ML 
methods improve the relative predictive performance as the sample size 
increases. Nonetheless, all studies with observations in excess of 500 appear to 
be in favor of ML forecasting in general, and in one case (Siami-Namini and 
Namin, 2018), LSTM in particular. Studies in favor of ARIMA modelling 
appear to have smaller datasets; however, more research is required to reach a 
conclusion. 
 
Even less conclusive is the fact that few studies exist that compare both methods 
(LSTM and ARIMA) to determine whether the superiority of the model can be 
influenced by other factors such as the region where the data are sourced, its 
sector, or even whether the data are sourced from periods of economic crisis. 
However, studies in other sectors (social data, scientific data) appear to suggest 
that LSTM models are more suited for forecasting more complex, multivariate 
data (Essa et al., 2021; Zambezi, 2021a), while ARIMA models are best suited 
for predicting univariate linear time series data. 
 
In summary, the jury is still out on the superiority of ML techniques when 
compared to traditional statistical models for the estimation of financial and real 
estate data; however, the literature and existing empirical studies appear to 
support several mixed conclusions. The first is that of all the traditional 
statistical models, the ARIMA model appears to be most suitable for volatile 
data (Miswan et al., 2014). Moreover, the ARIMA model has performed more 
efficiently than traditional feed forward neural networks such as the ERNN and 
BPNN models (not LSTM models) (Lee et al., 2008). 
 
Secondly, the literature points to the superiority of neural networks over 
traditional statistical models when estimating nonlinear data (such as the 
financial and real estate data used in this study) (Adebiyi et al., 2014). Of all 
the neural networks, LSTM models also appear to have a better performance 
due to their temporal component, which other traditional feed forward networks 
do not have (Essa et al., 2021; Zambezi, 2021a). Therefore, of all the neural 
networks, the literature points to LSTM as the most efficient for the study in 
question. Moreover, empirical studies point to increasingly better performance 
of LSTM models as datasets increase in size. As sample sizes decline, 
traditional statistical models provide a better forecasting performance 
(Cerqueira et al., 2019). 
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Thirdly, empirical studies and the literature suggest that the type of data may 
influence the suitability of the model. Fewer errors have been produced in 
empirical studies with LSTM over ARIMA models when forecasting 
multivariate, volatile data, whereas fewer errors have been produced by 
ARIMA over LSTM models when forecasting univariate data. Finally, hybrid 
models, those which are a cross between ML and traditional statistical models, 
are more efficient than either alone, given that they both have limitations. 
Notably, there appears to be negligible related work (apart from Hopp (2021)) 
based on a comparison of the performance of both models particularly during 
crisis periods in particular. Zhang et al. (2022) confirm the uniqueness of crisis 
data; however, Hopp (2021) finds no difference in the preference for LSTM 
over the DFM whether pre- or post- COVID-19 crisis period. 
 
Therefore, the literature and related empirical work have not reached a 
consensus. However, there is some evidence that suggests the ARIMA models 
provide the best statistical tools for estimating volatile real estate data, while 
the LSTM models appear to provide the best ML tools for forecasting the same, 
and ultimately, the latter perform relatively better as the sample size increases. 
 
 
3. Methodology 
 
3.1. Data and Sample Period Description 
 
The study uses the daily prices of the Financial Times Stock 
Exchange/Johannesburg Stock Exchange (FTSE/JSE) South Africa Listed 
Property Index (J253). Specifically, the use of daily data is justified as it enables 
the model to capture abrupt, short-term shifts in market behaviors that are often 
smoothed over in lower-frequency datasets. This is particularly important in 
periods of crisis where price sensitivity and market reactivity are heightened. 
Furthermore, this dataset comprises low, high, opening, and closing prices as 
well as the volume of daily prices. For the purpose of this study, the closing 
prices of the South African listed property index are adopted as the benchmark 
measure of the listed property index performance to ensure consistency. While 
listed properties are unique in their business and investment objectives, as they 
focus on real estate and a steady stream of income, the SA listed property index 
(J253) is particularly critical as it enlists only the top 20 liquid real estate 
companies on the JSE. 
 
More so, the FTSE/JSE SA Listed Property Index (J253) is selected as the focus 
of this study because it serves as a key benchmark for the performance of the 
listed real estate sector in SA. This index includes the most actively traded and 
liquid real estate investment trusts (REITs) and property stocks on the 
Johannesburg Stock Exchange, thus offering a representative and consolidated 
view of investor sentiment and market trends within the property asset class. As 
a subcomponent of the broader equity market, the J253 is particularly sensitive 
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to macroeconomic shocks and interest rate changes, thus making it an ideal 
candidate for assessing the responsiveness and forecasting accuracy of financial 
models during crisis periods. Additionally, although the South African listed 
property market remains well-established and institutionally mature, it still 
operates within an emerging market context which is characterized by 
volatility, regulatory shifts, and unique structural dynamics. This duality 
enhances the value of the index as a test case for forecasting models intended 
to inform both investment decisions and policy-making in similar economic 
environments. Furthermore, the data are retrieved from the Integrated Real-time 
Equity System (IRESS) Research Domain database. The sample period for this 
study is from January 2, 2015, to July 8, 2021. This timeframe covers both the 
pre-COVID-19 and COVID-19 periods, thus providing sufficient and robust 
data to evaluate the impact of the pandemic in our analysis.  Hence, a total of 
1,628 observations are obtained and considered for the purpose of this research 
inquiry. The subsequent section clarifies the adopted methodology for the 
research study. 
 
3.2. Model Specifications 

3.2.1 ARIMA Model 

The ARIMA model, which is also known as the Box-Jenkins model, is a 
generalized form of the ARMA model that includes integrated components (Pal 
and Prakash, 2017). These integrated components are crucial when dealing with 
datasets that are non-stationary, as the integrated component of the ARIMA 
model helps to transform non-stationary data into a stationary form. This is 
accomplished by the ARIMA model which applies differencing on the time 
series data one or more times to eliminate the non-stationarity effect (Pal and 
Prakash, 2017; Nielsen, 2019). 
 
The ARIMA model is denoted by (p, d, and q), which represents the AR, MA 
and the differencing components. The d component which distinguishes the 
ARMA model from the ARIMA model, aims to de-trend the signal to make 
time series data stationary and suitable for forecasting purposes (Pal and 
Prakash, 2017). This is why the ARIMA model is more widely preferred and 
utilized for forecasting and academic research than other time series models 
such as the AR, MA and ARMA models (Nielsen, 2019). 
 
Using the ARIMA model for forecasting, the future value of a defined variable 
can be determined via the use of a linear function that contains both past 
observations as well as random errors as expressed below: 

�� = � + ������ + ������ + ⋯ + ������ + ������ + ������ + ⋯

+ ������ + �� (1) 

or equivalently by using: 
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�1 − � ����

�

���

� (1 − �)��� = �1 + � ����

�

���

� �� (2) 

where � is a lag operator, �� is the actual value (i.e. price of listed property) at 
time � , ��  is a random error at � , �  is the intercept or constant, �� (i  =
 1,  2,  … . q) , �� (j  =  1,  2,  … p)  are the model parameters, and �  and �  are 
integers and often referred to as the MA and AR orders of the model, 
respectively. The assumption regarding the random errors �� is that they are 
identically and independently distributed with a mean zero and constant 
variance of ��. 
 
Steps to ARIMA Modelling 

Using the ARIMA methodology, ARIMA modelling follows a three-step 
iterative approach which involves identification of the model variables, 
estimation of the parameters and application of diagnostic tests to evaluate and 
ascertain the optimal parsimonious model from a variety of different ARIMA 
models (Olson and Wu, 2017). 
 
Stationarity Test 

In the context of this study, we first visualize the time series dataset to determine 
whether the dataset is stationary in order to commence the ARIMA modelling 
process We then perform preliminary tests for both seasonality and stationarity 
of our times series data by using natural logarithm transformation and 
differencing techniques. If the dataset is non-stationary, we apply differencing 
to the time series to enforce stationarity. This is illustrated in Figure 1. 
 
Autocorrelation and Partial Autocorrelation Functions 

Upon stationarity of the dataset, we determine the optimal parameters to be 
estimated by our model. To this end, we apply both the autocorrelation function 
(ACF), and partial autocorrelation function (PACF) to determine the best order 
of our ARIMA model. This is presented in Figure 2, which shows the natural 
logarithm transformed dataset after first differencing and the suitability of the 
data for time series modeling. 
 
Model Diagnostic Checks 

Thereafter, we express the different series of our ARIMA model as well as their 
estimated parameters (�, � and �) by using the maximum likelihood method 
and the assumption that the error terms are independent and normally 
distributed. Thus, our log-likelihood function is expressed as: 

log � (α, θ, σ� ) = −
�
2

log(2�σ�) − � ��
�( α, θ) 2σ��  (3) 
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Thereafter, we build our time series model and make predictions based on the 
optimal ARIMA model. 
 
 
Figure 1 Closing Price Changes (July 1, 2019, to July 1, 2020): A) 

before Differencing, and B) after Natural Log 
Transformation and Differencing 

 
 
 
Figure 2 ACF and PACF of Lagged Time Series after First Order 

Differencing 

ACF for Differenced Series PACF for Differenced Series 
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As presented in Table 2, model diagnostic checks are performed to determine 
the most parsimonious- as opposed to complex- model, as well as the goodness 
of fit of each one by estimating the relative prediction accuracy or error for each 
ARIMA model variation, with the use of the six measures as listed. In each 
case, where the value of the measure is the smallest, this is considered the best 
fitting and most parsimonious variation of the ARIMA model. All but ARIMA 
(1,1,3), which was selected twice, were selected by only one measure if at all, 
and therefore ARIMA (1,1,3) is selected as the model for forecasting. 
 
Furthermore, the choice of the ARIMA (1,1,3) specification is informed by a 
rigorous model selection process based on widely accepted criteria such as the 
Akaike information criterion (AIC) and Bayesian information criterion (BIC), 
both of which favor this configuration. Additionally, this model shows superior 
performance across most forecasting error metrics, including the mean absolute 
error (MAE) and mean absolute percentage error (MAPE). While several 
alternative ARIMA configurations are estimated, the (1,1,3) model consistently 
outperforms the others in both in-sample fit and out-of-sample forecasting 
accuracy. This approach aligns with that of Stevenson (2007) who emphasizes 
the importance of balancing parsimony with predictive accuracy in ARIMA 
model selection, particularly in real estate applications where overfitting can 
distort inference. Accordingly, the chosen model reflects both empirical 
robustness and theoretical soundness. 
 
 
Table 2 Evaluation of ARIMA Models 

Model AIC BIC ME RMSE MAE MAPE 
ARIMA 
(1, 1, 1) 

-7889.31 -7873.51 -0.250 6.287 4.256* 0.869* 

ARIMA 
(1, 1, 2) 

-7888.72 -7867.65 -0.255 6.284* 4.261 0.869 

ARIMA 
(1, 1, 3) 

-7919.55* -7893.21* -0.224 6.371 4.333 0.881 

ARIMA 
(1, 1, 4) 

-7914.73 -7883.13 -0.234 6.369 4.331 0.880 

ARIMA 
(2, 1, 1) 

-7907.16 -7886.09 -0.257* 6.318 4.315 0.876 

ARIMA 
(2, 1, 2) 

-7907.74 -7881.40 -0.230 6.317 4.314 0.877 

ARIMA 
(2, 1, 3) 

-7917.22 -7885.62 -0.225 6.371 4.340 0.882 

ARIMA 
(2, 1, 4) 

-7918.45 -7881.58 -0.223 6.374 4.348 0.883 

Notes: * indicates the lowest value in each row. 
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3.2.2 LSTM Model 

LSTM networks are a type of RNN designed to handle the vanishing gradient 
problem that plagues traditional RNNs (Nielsen, 2019). LSTM has memory 
cells that allow information to be remembered over a longer period of time, thus 
making it suitable for tasks such as language modeling, speech recognition, and 
sequential prediction. An estimated LSTM model is a pre-trained LSTM model 
that has been fine-tuned on a specific task with a dataset. The parameters of the 
model have been estimated or trained from data to minimize a loss function that 
measures the difference between the predictions and the actual output. This 
fine-tuning process allows the model to make predictions for the specific task 
with high accuracy (Gridin, 2021).The choice of using the LSTM model over 
other ML models is largely due to its strong capacity to learn and retain long-
term dependencies in sequential data, a property particularly relevant to real 
estate time series where historical price patterns often influence future trends. 
Compared to other deep learning architectures such as convolutional neural 
networks (CNNs), which excel in spatial data tasks, or gated recurrent units 
(GRUs), which are a simplified version of LSTM at the cost of nuanced 
memory retention, LSTM networks provide a more robust framework for 
modelling temporal dynamics. Given the research aim to forecast time-
dependent financial performance, LSTM is deemed the most suitable among 
the neural network alternatives for capturing the intricate, time-lagged 
relationships found in daily real estate market data. 
 
In addition to this, there are several reasons why an LSTM model may be 
selected for time series forecasting. First, an LSTM model is designed to handle 
long-term dependencies in time series data, where the current value of the time 
series depends on values from many time steps ago (Bianchi et al., 2017). 
Secondly, an LSTM model can handle multiple input features, which makes the 
model well-suited for time series data that involve multiple related variables 
(Gridin, 2021). Thirdly, an LSTM model can handle missing or noisy data by 
using gates to control the flow of information in the network (Pal and Prakash, 
2017). Lastly, an LSTM model is capable of modeling non-linear relationships 
between the input and target variables, which make this model  well-suited for 
time series data that exhibit non-linear patterns or trends (Lazzeri, 2020). 
 
Steps Involved in LSTM Model Estimation and Training 

To build an ML (LSTM) model for forecasting with Python, a programming 
language, this study follows a 5- step approach that involves: data 
preprocessing, building the model architecture, and compiling, training, and 
evaluating the model (Brownlee, 2018; Korstanje, 2021). 
 
Data preparation 

To commence the analysis, the real estate data are preprocessed by using a 
normalization technique that utilizes the scikit-learn preprocessing library and 
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a classical data transformer to scale each data feature into transformed intervals 
between 0 and 1 (Brownlee, 2018; Korstanje, 2021). 

��� =
�� − ����

���� − ����
 (4) 

Where 

���� = min
���,�…�

�� 

���� = max
���,�…�

�� 

��� ∈ [0,1] are the scaled values of ��, � is number of observations, and �� is the 
original data. 
 
This process helps to rescale datapoints into manageable weight ranges that are 
stable and less prone to ML errors. To effectively utilize the LSTM algorithm 
for prediction, the study utilizes real estate market data features including 
opening, high, low and closing prices, volume and returns that are considered 
over a 5-window period from January 5 to 9, 2015. The last 5 values of the data 
features are used to predict the next closing price and squared return. The data 
before normalization are listed in Table 3 and post normalization in Table 4. 
 
 
Table 3 Data before Normalization 

Date 
Opening 

Price 
High 
Price 

Low 
Price 

Closing 
Price Volume Returns 

2015-01-05 593.73 594.18 589.51 589.99 11,411,264 -0.00630 
2015-01-06 589.99 594.29 587.74 593.63 14,818,142 0.00617 
2015-01-07 593.63 594.39 590.17 592.85 15,017,394 -0.00131 
2015-01-08 592.85 600.82 592.22 599.19 21,304,403 0.01070 
2015-01-09 599.19 601.56 597.29 600.74 18,151,556 0.00258 
 
 
Table 4 Data post Normalization 

Date Open High Low Close Volume Returns 
2015-01-05 0.79745 0.78745 0.80801 0.78995 0.00306 0.56446 
2015-01-06 0.78995 0.78768 0.80445 0.79726 0.00619 0.60871 
2015-01-07 0.79726 0.78789 0.80934 0.79569 0.00637 0.58216 
2015-01-08 0.79569 0.80105 0.81347 0.80842 0.01214 0.62476 
2015-01-09 0.80841 0.80256 0.82368 0.81153 0.00924 0.59599 
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Model architecture design 

Building the architecture of the model involves determining the number of 
layers and hidden units, type of activation functions, etc. that will be used in the 
LSTM model (Brownlee, 2018; Korstanje, 2021). This study considers a 6-2 
LSTM network topology, where each number corresponds to the number of 
neurons in a given layer and the last layer corresponds to the prediction (we 
predict the closing price and squared returns at the same time). We also use a 
rectified linear unit (ReLU) as an activation function (for cell and hidden states) 
and sigmoid as a recurrent activation function (for activating the 
input/forget/output gate) in each layer. The ReLU is a popular activation 
function used in deep learning models, including LSTM models. The ReLU 
activation function is defined as � = ���(0, �), where � is the input for the 
activation function and � is the output. The motivation for using the ReLU 
activation function is that it introduces non-linearity into the model, thus 
allowing the model to learn more complex relationships between the inputs and 
outputs. 
 
Also, to minimize overfitting errors, we use the dropout technique and bias 
regularizer. Using the drop-out technique, we define the dropout level = 0.12 
(i.e., it drops out the cell and hidden states in LSTM) for each layer and 
recurrent dropout level = 0.02 (i.e., it drops out the input/update gate in LSTM). 
Likewise, we also use the bias regularizer in the L2 form, i.e., the cost function 
which contains a penalty term 0.2 × ∑ ��

�, where �� is bias. The purpose of bias 
regularization is to prevent overfitting and improve generalization by adding a 
penalty to the loss function during training. 
 
Model compilation 

The compilation of the LSTM model involves specifying the optimizer, loss 
function, and evaluation metrics to be used during training (Castro et al., 2022). 
The loss function measures the difference between the actual and predicted 
values and is used as a guide for updating the model parameters during training. 
Common loss functions for time series forecasting include the mean square 
error (MSE), mean absolute error (MAE), and mean absolute percentage error 
(MAPE). However, only the MSE is considered in this study as it is a commonly 
used loss function for regression problems, including time series forecasting 
with LSTM models. This is because the MSE measures the average squared 
difference between the model predictions and the actual output. 
 
Furthermore, the LSTM optimizer updates the model parameters based on the 
gradient of the loss function. While common optimizers for LSTM models 
include the stochastic gradient descent (SGD), and adaptive moment estimation 
(Adam), and adaptive gradient algorithm (Adagrad) optimizers, this study 
adopts the Adam optimizer as it calculates adaptive learning rates for each 
weight and bias in a neural network, which helps the model to converge faster 
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and more effectively compared to traditional gradient descent optimization 
(Siami-Namini et al., 2018; 2019). 
 
Lastly, the LSTM model is evaluated on several metrics to determine the 
performance of the model on the validation or test data. The selected metrics 
include the MAE, RMSE, and MAPE. Evaluating the model performance 
across several benchmarks offers a robust assessment of the LSTM model for 
forecasting purposes. 
 
Model training 

Training the model involves inputting the preprocessed data into the model and 
training it over multiple epochs. During each epoch, the model processes the 
data, makes predictions, and updates its parameters based on the loss and 
optimizer (Korstanje, 2021; Castro et al., 2022). In a typical LSTM model 
training process, the loss function, which in this case is the MSE, is calculated 
after each epoch and used to update the model parameters. Over time, the model 
continues to learn from the data and improves its predictions, thus leading to 
smaller MSEs. However, it is important to monitor the validation loss, which is 
calculated by using a separate validation set. The validation loss is used to 
evaluate the performance of the model on new data and ensures that it is not 
overfitting to the training data. If the validation loss increases while the training 
loss continues to decrease, this may indicate that the model is overfitting to the 
training data, and further steps may need to be taken to improve its 
generalization performance. In general, a good model should have a decreasing 
training loss and a stable or slightly decreasing validation loss as the training 
progresses. This suggests that the model is improving its predictions on the 
training data while still maintaining a good level of performance on new data. 
 
In the context of this study, the loss function is determined after 13 epochs, 
which is the smallest MSE that is closest to the validation loss as presented in 
the loss function graph in Figure 3. During this training process, a total of 326 
parameters (312 input parameters and 14 output parameters) are trained using a 
batch size of 10. The root mean square propagation (RMSprop) algorithm is 
used as the learning algorithm for the data at a learning rate of 0.01, and a 
momentum rate of 0.0. Thus, the optimal LSTM model after 13 epochs is 
further evaluated across several performance metrics. 
 
Model evaluation 

Evaluating the model involves using the validation set to evaluate the 
performance of the model and ensure that it is not overfitting to the training data 
(Gridin, 2021). This may involve calculating metrics such as accuracy, 
precision, recall, etc. To evaluate the performance of the LSTM model, we split 
all of the data into 2 sets: 90% of the data comprise the training set, while 10% 
the testing set (we choose this split since in this case, the end point of the 
training data is November 12, 2020, which means that the COVID-19 crisis 
information is contained in the data). As presented in Table 5, the optimal 
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LSTM model with the smallest MSE after 13 epochs is selected based on 
several performance evaluation criteria, including the AIC, BIC, ME, RMSE, 
MAE and MAPE. 
 
Figure 3 LSTM Model Configuration 

 
 
Evaluation of LSTM Model 
 
Table 5 Performance Evaluation of LSTM Model 

AIC BIC ME RMSE MAE MAPE 
8410.43 23,710.66 4.4 5.91 6.23 2.14 

 
 
4. Results and Discussion of Findings 
 
Forecasting is performed with two different models, including the ARIMA 
(1,1,3) as dictated by the AIC and BIC, as well as the LSTM model. To compare 
these forecasts between models, the first 90% of the real estate data set are 
reserved for training the models and the last 10% are used as the test data. This 
split allows for inclusion of the initial onset of the COVID-19 crisis within the 
training sample. Both models are trained with 90% of the data observations and 
subsequently tested with the remaining data. Thereafter, the residuals of both 
models are analyzed prior to comparing the forecasting performance of the 
evaluated model. 
 
Model Evaluation using Residual Analysis 

The residual analysis is a common method for evaluating the performance of 
time series models. The residuals are defined as the difference between the 
observed and predicted values from the model. A good time series model should 
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have residuals that are not correlated and have constant variance and a zero 
mean. As presented in Figures 4.1 and 4.2, after selecting a potential model and 
estimating its parameters, diagnostic checks are performed with the basic 
assumption that the residuals have white noise - are randomly distributed, a 
mean of zero, and a constant variance. Furthermore, the Ljung-Box test is used 
to check whether the residuals are not correlated. Upon testing, our Ljung-Box 
statistics reveal that the chi-squared statistics=1.938, and the p-value = 0.7873, 
thus, the null hypothesis of white noise being present is rejected. Also, it can be 
observed that there is no residual correlation in the time series data set as all of 
the series are within the boundaries. This is further depicted in the normal Q-Q 
graph as all residuals approximately fall along the line. Therefore, this implies 
that both our ARIMA (1,1,3) and LSTM models are good and statistically fit 
for forecasting the real estate time series data. 
 
 
Figure 4.1 Analysis of Residuals from ARIMA Model 
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Figure 4.2 Analysis of Residuals from LSTM Model 

 
 
 
Forecasting Using Evaluated Models 

Likewise, we evaluate and compare the ability of our optimal ARIMA (1,1,3) 
and LSTM models to forecast South African real estate during the COVID-19 
crisis by using a variety of performance metrics including the MSE, RMSE, 
MAE and MAPE.  The results of our forecasts are summarized in Table 6 and 
graphically presented in Figure 4.3. 
 
Table 6 ARIMA vs. LSTM model evaluation with forecasting 

performance evaluation metrics 

Model MSE RMSE MAE MAPE 
ARIMA (1, 1, 3) -0.224 6.371 4.333 0.881 
LSTM 4.40 5.91 6.23 2.14 
Reduction in error rates 

(LSTM-ARIMA) / 
LSTM 

105.1% -7.8% 30.4% 58.8% 
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Table 6 shows that for all of the metrics except the RMSE, the ARIMA (1,1,3) 
model performs more parsimoniously than the LSTM model, with values of -
0.224, 4.333 and 0.881 for the MSE, MAE and MAPE respectively. At these 
values, the ARIMA model provides a 105.1%, 30.4%, and 58.8% reduction in 
error rate for the ME, MAE and MAPE respectively, when its forecasting 
performance is compared with those of  the LSTM model. Conversely, the 
LSTM model performs better according to the RMSE metric, at a value of 5.91 
compared to the 6.371 of the ARIMA model, or a 7.8% reduction in error rate 
by the LSTM compared to the ARIMA model. Based on 3 of the 4 metrics, it 
can be concluded that the ARIMA model outperforms the LSTM model at 
medium to high margins during the COVID-19 pandemic period. 
 
Figure 4.3 Forecasting Using Evaluated Models 
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The study estimates real estate performance by using closing prices as the 
baseline. Estimations are repeated numerous times in order to reach realistic 
values. The data appear to have significant enough reductions in error rates 
when the ARIMA model is compared to the LSTM model, in order for the 
superiority of the former to be established over the latter for the data in question. 
 
The superior performance of the ARIMA (1,1,3) model over the LSTM model 
in this study aligns with several empirical investigations that suggest traditional 
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statistical models often outperform ML approaches under specific conditions. 
For example, Lee et al. (2008), Merh et al. (2010) and Makridakis et al. (2018) 
report that ARIMA models tend to deliver more accurate forecasts when 
applied to datasets with shorter time spans, less complexity, and predominantly 
linear characteristics.  These subsisting conditions are present in this study, 
which favors a univariate, moderate-sized dataset during the relatively brief 
COVID-19 crisis period. In contrast, LSTM models are generally more 
effective in handling large, multivariate datasets with complex nonlinear 
patterns and longer temporal sequences, as evidenced by the findings of 
Adebiyi et al. (2014), Cerqueira et al. (2019) and Hopp (2021), among others. 
 
However, the mixed conclusions in the literature suggest that model superiority 
is highly context-dependent and not generalizable across asset classes, sectors, 
or data structures. Cerqueira et al. (2019) emphasize the inherent difficulty of 
determining the precise volume of data needed for predictive tasks and note that 
optimal model performance is influenced by the interplay among data 
complexity, problem difficulty, and learning algorithm design. Further 
supporting this   premise, studies from other South African sectors, such as Essa 
et al. (2021) and Zambezi (2021), indicate that LSTM models tend to 
outperform ARIMA models in contexts with greater data complexity and larger 
volumes of data. Accordingly, while the ARIMA model outperforms the LSTM 
model based on the specific conditions of this study, it is important to note that 
this may not hold across all forecasting scenarios or asset classes. 
 
 
5. Conclusion 
 
Based on the findings of our research, we do not find that the ML technique as 
represented by the LSTM model has more accurate predictive capabilities, 
despite expectations to the contrary from the literature and empirical studies, 
particularly given the size of the data set in this study. Our findings indicate that 
a traditional predictive technique as represented by the ARIMA model is more 
robust, and a better predictive technique for forecasting the South African real 
estate sector during the COVID-19 crisis. Hence, we conclude that traditional 
statistical techniques can better forecast the South African real estate sector 
during crises/ unforeseen shocks such as the COVID-19 pandemic due to their 
robust nature. This finding indicates that the traditional econometric models 
still have a role to play in forecasting financial data, despite the recent 
development of ML models. 
 
Given the findings in related work, however, we propose that the findings of 
the study may have been different, given a larger data size or more complex 
(e.g. multivariate) data. It is therefore recommended that the study is repeated 
with a larger, more complex set of data, in order to stress-test the conclusion. 
Also, it would be interesting to compare the forecasting performance of hybrid 
models such as LSTM-ARIMA with non-hybrid models. 
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Lastly, a notable limitation of this study is that the LSTM model is implemented 
by using a single architecture configuration, without comprehensive 
hyperparameter tuning. This decision is guided by the exploratory objective 
nature of the study, and computational resource constraints, which require 
extensive tuning beyond the scope of this initial investigation. Moreover, 
similar approaches have been adopted in related studies, such as Adebiyi et al. 
(2014) and Essa et al. (2021), which also employ fixed LSTM configurations 
to benchmark performance against traditional models in financial and economic 
forecasting tasks. While basic adjustments such as modifying the dropout rate 
and number of training epochs through preliminary experimentation are 
implemented, it is necessary to emphasize that systematic optimization 
techniques, such as grid and random searches, or Bayesian optimization, are not 
applied. Hence, given that deep learning models are highly sensitive to 
hyperparameters, including the number of layers, neurons per layer, learning 
rate, batch size, and activation functions, alternative configurations may have 
produced improved forecasting accuracy. As such, the limited tuning in this 
study may have contributed to the underperformance of the LSTM model 
relative to the ARIMA model. Future research should apply robust 
hyperparameter optimization strategies to more fully exploit the predictive 
potential of LSTM models and explore the comparative performance of 
alternative deep learning architectures such as GRUs and CNN-LSTM hybrids, 
particularly in the context of real estate time series data. 
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