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1. Introduction 
 

Construction loans are generally viewed to be riskier than residential or 

commercial mortgages due to the uncertainty on whether the construction will 

be completed according to the specifications and schedules. Surprisingly, 

however, real estate researchers have given much more attention to the default 

risk of mortgages than to that of construction loans. In addition, the existence 

of the secondary market imposes a uniform standard on the underwriting of 

mortgages. This is why we observe that interest rates on mortgages do not 

differ much if the mortgage underwriting conforms to certain established 

standards. On the other hand, the terms of each construction loan can 

significantly differ, as each construction project has its unique characteristics. 

The unique characteristics of each construction project and the differing terms 

in construction loan contracts suggest that the risk-return (interest rate) trade-

off of a construction loan should be analyzed at the project level.  

 

It is fair to say that there is limited research with a main focus on construction 

loans. Ambrose and Peek (2008) argue that credit markets are critical to the 

market positions of developers, especially for private developers. They report 

that, during the 1988 to 1993 period, many banks with a deteriorated financial 

condition reduced their lending to the construction industry and there was a 

sustained decline in the market share of large private homebuilders. 

Consequently, there was an increase in the market share of public 

homebuilders who had better access to external funds. Chan (1999) 

demonstrates that credit availability has played a significant role in residential 

constructions. Credit availability impacts housing supply because it affects the 

cost of construction loans as well as the ability of builders to respond to a 

favorable market condition. In other words, early studies focus on the impacts 

of credit (construction loans) availability on the construction sector and the 

market structure or market supply condition of a region. 

 

Another line of the literature focuses on the relationship between construction 

sectors and economic growth. We find many studies that address this topic. 

For example, Jackman (2010) and Alhowaish (2015) study the causal 

relationships between construction and growth in developing countries. 

However, we can only identify one early study in the real estate literature that 

specifically examines construction loan risk. Lusht and Leidenberger (1979) 

report that residential construction lending risk is driven by multiple factors, 

which include the unavailability of materials, inflationary cost overruns, the 

property development experience of the borrower, and the lending experience 

of the lender. However, while the study identifies the risk factors of 

construction loans, it does not link the risks discussed to the pricing decision 

(the interest rate charged) on construction loans. 

 

This paper therefore aims to provide a basic model framework that establishes 

a linkage between the risks identified in construction loans and the interest 



Pricing of Construction Loans    413 

 

rate charged by lenders. In this model, we identify three factors to represent 

the risk. The first risk factor is the loss ratio. The lender might face an entirely 

different situation when a construction loan borrower defaults versus when a 

mortgage borrower defaults. When a mortgage borrower defaults, the 

collateral is a completed property that can be used or produce income. Hence, 

the mortgage lender can dispose the property without much difficulty. 

However, when the borrower of a construction loan defaults, the lender needs 

to deal with an unfinished building, of which the value will be difficult to 

realize (by selling or renting). In other words, depending on the type of 

property and the stage of construction, the lender will face varying degrees of 

difficulty to recover the outstanding construction loan balance from the sale of 

an unfinished property. This is why some lenders request the developer to be 

personally liable for the construction loan or provide other properties as 

additional collateral. Given this, we know that the construction loan interest 

rate charged by the lender should be a function of the expected loss ratio when 

a borrower defaults. 

 

The second and third risk factors that we include in the model are the first-

phase loan ratio and the leverage ratio, respectively. Intuitively, we know that 

the higher the loan-to-value ratio of a project, the more likely it is for a 

borrower to default. In addition, the loss of the lender due to a default is also 

greater with a higher leverage ratio. Unlike a mortgage contract (which pays a 

lump sum amount when the contract is signed), a construction loan is released 

in phases in accordance with a construction schedule and the actual progress. 

Given this, the first-phase loan ratio has a similar impact on the default 

probability as the leverage ratio. A high leverage ratio with a low initial-phase 

loan ratio will have a much lower impact on the default decision than when 

the initial-phase loan ratio is also high. Similarly, a high initial-phase loan 

ratio will have a significant impact on the interest rate when a high leverage 

ratio is also used. 

 

We develop a simple 2-period game theoretic model to determine a mutually 

acceptable interest rate for a construction loan. The mutually acceptable 

interest rate in our model is the rate that makes a developer indifferent 

between using 100% equity financing and a construction loan. In other words, 

it is the highest interest rate that a bank can charge and a developer is willing 

to accept. If the interest rate proposed by the lender is higher than the 

mutually acceptable interest rate derived by the model, the developer will be 

better off with 100% equity financing for the construction project.  

 

The model that we use follows closely the models developed by Chan, Fang 

and Yang (2008) and Chan, Wang and Yang (2012) for analyzing the presale 

decisions of developers (in which a developer can abandon a construction 

project that is presold to buyers). We derive a closed-form solution for the 

construction loan interest rate and analyze its relationships with the three risk 

factors. Consistent with intuition and the results reported by Chan, Fang and 

Yang (2014), we find that the mutually acceptable interest rate and the 
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probability of an abandonment decision increase with an increase in the loss, 

leverage and first-phase loan ratios. Our numerical results also show that the 

impact of any one of the three risk factors on the construction loan interest 

rate or default probability increases when the magnitude of the other two risk 

factors increases.  

 

Section 2 discusses our model setup. We use a backward induction method to 

solve for a mutually acceptable construction loan interest rate. In this section, 

we also discuss the impacts of the loss, leverage and first-phase loan ratios on 

the mutually acceptable interest rate and the probability of a default. Section 3 

uses a numerical analysis to explore results that we cannot obtain from the 

analytical analyses that we report in Section 2. We conclude and suggest areas 

for future research in Section 4. 

 

 

2. Model   
 

In our model, a developer builds a property in two phases. The two phases are 

specified as [0,1]t and [1,2]t . At the beginning, or when 0t  , the 

developer launches a first-phase construction and decides on the financing 

method. The developer will select either 100% equity financing or a 

combination of equity and a construction loan. We assume that there are two 

uncertainties that the developer needs to deal with at 0t  : the construction 

cost 𝑐̃ (which is known with a probability distribution function [ , ]c c   ) 

and the future market price of the property 𝑝  (which is known with a 

probability distribution function  [ , ]p p   ). We define c  as the 

expected construction cost and p  as the expected future market price. The 

dispersions of the construction cost and the future price are defined as   and

 , respectively. We assume that the realized values of the construction cost 

c  and future property price p  cannot be observed until at time 1t  . 

 

At 0t  , if the developer decides to finance a construction with a construction 

loan, we assume that the amount of the construction loan is exogenously 

determined at l % of the expected construction cost, or lc . (In other words, 

we do not model the optimal leverage related issues.) To simplify the 

mathematical presentation, we set the risk-free rate to zero (or set the expected 

inflation rate and real return to zero). However, the borrower will pay a risk-

adjusted interest rate on the construction loan that varies with the loan 

characteristics. 
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Figure 1        Decision Tree for Developer and Lender 

 

Note: Game covers three time stages: 0t  , 1t   and 2t  . Market price p and total 

construction cost 𝑐  are unknown until 1t  . However, at 0t  , their 

distributions ],[~~   ppp  and ],[~~   ccc  are known to public. 

At 0t  , lender offers two-period loan at rate r and developer decides to finance 

construction with either equity or combination of loan cl  and equity. Lender 

will price loan to make developer indifferent between using a loan and 100% 

equity. Lender will provide first-phase loan payment cdl  if loan is accepted by 

developer.  Developer launches 1st-phase development at 0t  . At 1t  , upon 

observing the realized 𝑝 and 𝑐, developer decides to either continue or abandon 

construction. At 2t  , if property is completed, developer will sell it to market 

at price 𝑝 and pays loan amount and interest to lender. Game ends at one of the 

following terminal nodes: LC (leverage and completion), LQ (leverage and 

abandonment), NC (equity financing and completion), and NQ (equity financing 

and abandonment).       

t=2 

   Lender 

Construction loan  

 

NC 

Developer 

is realized at value p; 

is realized at value c 

 

NQ 

1st-phase development 

100% Equity 

 

Lender pays  

Abandon 

project 

 

Continue 

construction 

 

Complete const., 

sell property at 

price p 

LC LQ 

is realized at value p; 

is realized at value c 

 

Developer  

1st-phase development 

First-phase loan   

downpay  

Lender receives 

  

Complete const., 

sell property at 

price p, pay back 

loan  

Property price ; Total construction cost 

; Lender offers loan rate r  

Continue 

construction 

 

Abandon 

project 

 

t=0 

t=1 



416    Chan, Wang and Yang 

 

Figure 1 shows the decision tree of our model under the two financing 

methods. At 0t  , knowing the probability distributions of 𝑐̃  and   𝑝̃ , the 

lender will offer a construction loan with a selected interest rate to the 

developer. The construction loan amount is lc  and the two-period interest 

rate is r . Given the package offered by the lender, the developer will decide 

to either accept the loan and finance the rest of the construction cost with 

equity or reject the loan and finance the construction with 100% equity. To 

simplify the model, we assume that the first-phase construction cost is h  

percent of the total construction cost c . If the developer decides to use the 

construction loan, the lender immediately releases a first-phase construction 

loan dlc , where d  is the percentage of the first-phase construction loan in 

the total expected construction cost lc . Regardless of whether a construction 

loan financing method or a 100% equity financing method is used, the 

developer will launch the first-phase construction at 0t   and pay the first-

phase construction cost hc . We assume that h dl  so that the amount of the 

first-phase construction cost will be no less than the amount of the first-phase 

construction loan. 

 

At 1t  , the actual construction cost c  and the property price p  are realized 

and known to the two players. Observing the realized values, the developer 

will decide on whether to continue the construction (based on the information 

regarding the second-phase construction costs, second-phase construction loan, 

future property price and agreed upon construction loan interest rate) or 

abandon the project and default on the construction loan. If the developer 

decides to use 100% equity financing, the only decision that s/he needs to 

make is whether to abandon the project at 1t  . If the developer decides to 

abandon the project, s/he incurs a loss of the sunk first-phase construction cost. 

The developer will pay the remaining construction cost c hc  if s/he decides 

to continue the project. Under this route, the construction will be completed at 

2t  and the developer will sell the property to the market at the realized 

market price p .  

 

Under the construction loan financing route, at 1t  , if the developer chooses 

to continue the construction, s/he will incur a second-phase construction cost 

c hc  and borrow a second-phase construction loan (1 )d lc . The project 

will be completed at 2t  . The developer will sell the property to the market 

at price p and pay off the construction loan with interest that totals (1 )lc r . 

We define r  as the interest rate on the construction loan for the entire 

construction period (or the period from 0t   to 2t  ).   

 

If the developer chooses to abandon the project, s/he will not receive the 

second-phase construction loan nor pay the second-phase construction cost. 

Under this circumstance, the developer will pay the lender a portion (could be 
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zero) of the first-phase construction loan (with interest), or 
2

(1 )(1 )rdlc k  . 

The parameter [0,1]k  measures the loss ratio of the lender.  When 1k  , 

the lender will not be able to recover anything after the developer abandons 

the project. When 0k  , the lender recovers all of the principal and interest 

of the first-phase construction loan from the developer. In this model, 

[0,1]k  is exogenously determined. Note that we use 
2

r  as the interest rate 

for the first-phase construction loan as we assume that the length of the first-

phase construction period is half that of the total project period. (Our analysis 

is not sensitive to the selection of the length of the first period.) The 

information status and cash flows at each decision point are illustrated in 

Figure 2. 

 

Given all the parameter values, for each exogenously determined leverage 

ratio l , the lender will offer the highest corresponding interest rate that the 

developer is willing to accept for the project. In other words, the lender will 

set an interest rate r  that makes the developer indifferent between the two 

financing methods (using 100% equity or a construction loan). Under this 

framework, for a given leverage ratio l , there will be a corresponding 

mutually acceptable interest rate r  that will be offered by the lender. 

However, since the leverage ratio l  is exogenously given, our model will not 

be able to solve for the optimal leverage ratio (and, therefore, the optimal 

interest rate of the construction loan) for the lender and the developer. 
 

 

2.1      Abandonment Decision of Developer 

 

Using a backward induction method, we first solve for the abandonment 

decision rules of the developer under the two alternative financing methods. 

Lemma 1 reports the results. 

 

Lemma 1 At 1t  , the developer will continue the construction if the 

construction cost c  and the market price for the property p  satisfy 
 

                                ˆc c p hc                                                         (1) 
 

when using a 100% equity financing method, and satisfy  
 

           ˆ ' ( ) (1 ) 1
2

r
c c p c l r d h dl k

  
         

  
                   (2) 

 

when using a construction loan financing method. In other words, 𝑐̂ and 𝑐̂′ 
are the construction costs that make the developer indifferent between 

commitment and abandonment under 100% equity and construction loan 

financing, respectively. 

 

Proof.  See Appendix A.    
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Figure 2    Information Available and Cash Flows at Each Decision Point  
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2. Equity Financing        
Developer’s cash flows when: 

  Developer continues      ch                            )( chc                               p  

  Developer abandons      ch                                                      
 

Note: At 0t  , market price 𝑝 and total construction cost 𝑐 are unknown to public. 

However, all players know distributions of ],[~~   ppp  and

],[~~   ccc .  At 1t  , actual values of price and construction cost are 

realized (as 𝑝 and 𝑐).  At 0t  , developer chooses to finance construction either 

with 100% equity or loan.  Developer launches 1st-phase development by paying 

first-phase construction cost ch . If developer chooses to borrow, s/he will receive 

a first-phase loan amount cdl  from lender. At 1t  , after observing realized 𝑝 

and 𝑐, developer decides to abandon or continue project. If developer decides to 

continue project, s/he will pay second-phase construction cost chc  . If 

developer uses construction loan, lender will release second-phrase construction 

loan cld)1(  . At 2t  , developer will receive 𝑝 from sale of property and pay 

off the construction loan with interest clr)1(   if construction loan is used. If 

developer chooses to abandon project when construction loan is used, s/he will 

pay back lender a portion of the first-phase construction loan (with interest), or

  )1(2/1 krcdl  . 

 

 

From Lemma 1, we know that a developer will continue the project if 

ˆc c p hc    when a 100% equity financing method is used. The developer 

will continue the project if ˆ ' ( ) (1 ) 1
2

r
c c p c l r d h dl k

  
         

  
 

when a construction loan financing method is used. From Equations (1) and 

(2), we find that ˆ ˆ'c c , or  
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ˆ ˆ' (2 ) 1 0..
2 2

r r
c c lc d dk

  
        

  
                       (3) 

 

Equation (3) indicates that it is more likely for the developer to abandon a 

project when there is a construction loan than when a 100% equity financing 

method is used. In other words, the developer will have a higher expected 

abandonment probability when a construction project is leveraged than when 

it is unleveraged. This resembles the risk shifting effect of financial leverage 

addressed in the capital structure literature. 

 

To make the model realistic and simplify the mathematical derivation, we 

make two assumptions. First, regardless of the financing method used, we 

assume that the developer will have the chance to abandon the project when 

the realized market price is the average market price p . This means that  
 

ˆ |p pc p hc c      ,                                            (4) 

and 

ˆ ' | ( ) (1 ) 1 .
2

p p

r
c p c l r d h dl k c

  
          

  
              (5) 

 

From Equation (3), we know that if Equation (4) holds, Equation (5) must also 

hold. Given this,  
 

(1 ) .p h c                                             (6) 
 

This assumption guarantees that, when the construction cost is sufficiently 

high, the abandonment option can still be “in-the-money” with the expected 

future market price p .  

 

Second, regardless of the financing method used, we assume that the 

developer will have the chance to continue the project even if the realized 

future market price is at the average price p . This means that  
 

ˆ |p pc p hc c                                                (7) 

and 

ˆ ' | ( ) (1 ) 1 .
2

p p

r
c p c l r d h dl k c

  
          

  
              (8) 

 

From Equation (3), we know that if Equation (8) holds, Equation (7) must also 

hold. This means that  

( ) (1 ) 1 .
2

r
p c c l r d h dl k

  
         

  
                     (9) 

 

This assumption guarantees that, when the construction cost is sufficiently 

low, the abandonment option can still be “out-of-the-money” with the 
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expected future market price p . From Equation (9), we can find the upper 

boundary of the construction loan interest rate r , or 
 

2

(1 )
.

1 (1 )

M

d

p h dlk c
r r

lc k

   
 

   


                           (10) 

 

 

2.2      Expected Profit Functions 

 

We now discuss the expected profit of the developer from the project and the 

probability of a developer abandoning the project. If a developer uses 100% 

equity, the expected profit from the project is 
 

             
δ ˆ

ˆ

δ

δ δ

.

p pc c

p

p c p c

E p c dФ c d p hc dФ c d p

  

  

       




       (11) 

 

The first double-integral term in Equation (11) is the expected payoff when 

the developer continues the project. The second double-integral term is the 

expected payoff if the developer abandons the project. The probability for the 

developer to abandon the project is  
 

     
 

δ ˆ

δ ˆ 1
ABD ,

2

p c

p c

h c p
Pr dФ c d p

 



  
   

 


             (12) 

 

When a construction loan is used, the expected profit of the developer is 
 

  

       

   

δ '

δ

δ

δ '

ˆ

ˆ

π'

1 (1 ) .
2

p c

p

p c

p c

p c

E p c rlc dФ c d p

r
dlc hc dlc k dФ c d p



 

 



  

  
    



  
  

 

 





         (13) 

 

Similar to Equation (11), the first double-integral term in Equation (13) is the 

expected payoff if the developer continues the construction. The second 

double-integral term is the expected profit if the developer abandons the 

project. Under this construction loan financing method, the probability that 

the developer abandons the project is 
 

     
   δ

'

ˆδ '

1 1 1
2

ABD .
2

p c

p c

d
h dkl c p clr k

Pr dФ c d p

 



 
       

 
  

 


  

(14)  



Pricing of Construction Loans    421 

 

2.3      Mutually Acceptable Interest Rate 

 

We are now in the position to discuss the mutually acceptable interest rate for 

both the lender and the developer when a construction loan is used. Simply 

put, the lender will set the construction loan interest rate r at a level such that 

the developer is indifferent between using a construction loan financing 

method and a 100% equity financing method. We obtain 
 

 | ( ) ( ( )) ,r r E E r                                  (15) 

subject to 

2

(1 )
,

1 (1 )

M

d

p h dlk c
r r

lc k

    
 

   

 

 

where ( )E   and ( ( ))E r   are as specified in Equations (11) and (13), 

respectively. This means that when the construction loan interest rate is set at

r , the expected payoffs of the developer with or without a construction loan 

will be the same. Under this framework, the unconstrained interest rate 

selected by both the lender and the developer is 
 

 22
,r B B C

A

                                       (16) 

where 
 

 
2

2 (1 ) 0,A cl d k                                                      (17) 

     

 

2 (1 ) 1 2 (1 )

( ) 1 )(1 2 (1 )
2

2 (1 )
2

0,

B d k p c h dkl d k

r
p c c l r d h dl k d k

Ar
d k







         
 

     
              

     

  



          (18) 

 2 (1 ) 0.C dkA h c p cdkl      
 

                                (19) 

 

From Equation (9), we know that Equation (18) > 0. From Equation (6), we 

know that Equation (19) > 0.  In addition, the selected interest rate r  cannot 

exceed the boundary condition specified in Equation (10). To ensure that the 

condition Mr r   holds, we need  
 

 2

2

(1 )2
.

1 (1 )d

p h dlk c
B B C

A lc k

   
  

   

                    (20) 

 

This constraint will ensure that the lender will not select a construction loan 

interest rate r  that is too high to induce a high default probability. With this 
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additional constraint, a mutually acceptable loan interest rate  r  is the one 

specified by Equation (16) subject to Equation (20). 
 
 

2.4      Relationship with Other Parameters 

 

With this mutually acceptable interest rate r  in mind, we now analyze its 

relationship with the loss ratio k , first-phase construction loan ratio d , and 

leverage ratio l . We report this result in Proposition 1. We also analyze the 

relationships between the probability of abandonment decision Pr( )ABD   and 

the loss ratio k , first-phase construction loan ratio d , and leverage ratio l . We 

report the results in Proposition 2. 

 

Proposition 1  The mutually acceptable interest rate r  is increasing in the 

loss ratio k , and increasing in the first-phase loan ratio d if 2

1

1
r

k


 . The 

interest rate r  is also increasing in the leverage ratio l  if 0  , where  
 

 

4 (1 )
2 2

4 (1 ) 1 (1 ) .
2 2 2

r r
d k r

r r dlr
d k r c h dkl lr k p


  

      
  

      
              

      

      (21) 

 

For a given interest rate r ,  
 

0,
d

dl


                                                    (22) 

2

1

1
0 if ,

r

d
k

dd 


                                       (23) 

and 

0.
d

dk


                                                    (24) 

 

Proof. See Appendix B. 

 

The result is quite intuitive. Proposition 1 shows that the lender and the 

developer will agree on a higher interest rate when the first-phase construction 

loan ratio is larger. This makes sense. The higher the first-phase loan ratio, the 

greater the likelihood for a developer to default on the construction loan. Lai, 

Wang and Zhou (2004), Chan, Wang and Yang (2012) and Chan, Fang and 

Yang (2014) provide the intuition for this observation. Proposition 1 also 

indicates that when the loss ratio k  is large, the developer and the lender will 

accept a high construction loan interest rate. This high interest rate is used to 

compensate the lender in case of a default, as the loss of the lender is greater 

when the loss ratio is higher.  
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Proposition 1 also indicates that a higher leverage ratio l  means a higher 

construction loan interest rate if the magnitude of the first-phase loan and the 

loss ratios is high enough (see Equations (21), (22), (23) and (24)). This is true 

because an increase in the leverage ratio has little effect on the payoff of the 

lender when the first-phase loan and loss ratios are both zero. We now 

examine the effects of k , d  and l  on the probability of an abandonment 

decision Pr( )ABD  . Proposition 2 reports the results. 

 

Proposition 2  Under a mutually acceptable interest rate r , the probability 

of an abandonment decision Pr( )ABD   increases when the loss ratio k  

increases, or when the first-phase loan ratio d  increases if 2

1

1
r

k


 . 

Pr( )ABD   also increases when the leverage ratio l  increases if 0  . 

 

Proof. See Appendix C. 

 

Proposition 2 shows that the probability of an abandonment decision can also 

be an increasing function of k , d  and l . Note that the results reported in 

Proposition 2 are derived when we fix the interest rate at the mutually 

acceptable interest rate level. We are also interested in analyzing if the impact 

of one risk factor (for example, first-phase loan ratio d ) on the probability of 

an abandonment decision Pr( )ABD   can be affected by changes in the 

magnitude of the other two risk factors (in the example, loss ratio k  and 

leverage ratio l). The analytical solution to this question is too complicated to 

provide clear intuitions. Given this, we decide to discuss the results by using 

numerical analysis. 

 

 

3. Numerical Analysis 
 

In this section, we provide numerical examples to demonstrate the analytical 

results derived in Propositions 1 and 2. We also analyze how the impact of 

one risk factor on the construction loan interest rate (and the abandonment 

risk) changes when the magnitude of the other risk factors changes. We make 

sure that the assigned parameter values guarantee that the conditions specified 

in Equations (6), (9) and (20) hold. The benchmark parameter value set 

includes 1) the first-phase construction cost ratio 20%h  ; 2) the expected 

construction cost 13.5c  ; 3) the dispersion of the construction cost 7  ; 4) 

the expected market price 14p  ; and 5) the dispersion of the market price 

9  . The qualitative conclusions from the results of our numerical analysis 

do not differ much if we select the parameter values within their reasonable 

ranges. Table 1 shows a few of the numerical examples under this benchmark 

parameter set. 
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Table 1 Numerical Examples with Benchmark Parameter Set 

Selected k ,  l , d   Pr ABD '  *
r    E π' r  

90%, 95%, 20%k l d    54.91% 12.44% 1.98 

89%, 90%, 20%k l d    52.66% 11.73% 1.98 

88%, 85%, 19%k l d    49.14% 10.24% 1.98 

Note: Table shows abandonment probability  Pr 'ABD , loan interest rate *r  and 

expected profit of developer   'E r  in each of the three numerical examples 

with benchmark parameters k, l and d, where k is the loss ratio, l is the leverage 

ratio and d is the first-phase loan ratio. 
 
 

The results reported in Propositions 1 and 2 are illustrated in Figure 3 by 

using numerical analyses. We conduct comparative static analysis by 

spanning (within reasonable ranges) one of the three risk factors, k , d  and l , 

while holding the other two risk factors constant. The six charts reported in 

Figure 3 indicate that when the construction loan interest rate and the 

abandonment decision are jointly determined, the former is positively affected 

by the leverage, first-phase loan and loss ratios. For Chart A titled “Effect of 

Leverage Ratio on Loan Rate” and Chart B titled “Effect of Leverage Ratio on 

Abandonment Probability”, we specify that the first-phase loan ratio 

20%d   and the loss ratio 90%k  . We then span the leverage ratio l  from 

75%  to 95% . In Chart C titled “Effect of First-Phase Loan Ratio on Loan 

Rate” and Chart D titled “Effect of First-Phase Loan Ratio on Abandonment 

Probability”, we specify that the leverage ratio 90%l   and the loss ratio 

90%k  . We then span the first-phase loan ratio d  from 16%  to 20% . For 

Chart E titled “Effect of Loss Ratio on Loan Rate” and Chart F titled “Effect 

of Loss Ratio on Abandonment Probability”, we specify that the leverage ratio 

90%l   and the first-phase loan ratio 20%d  . We then span the loss ratio 

k from 86%  to 90% .  

 

Figure 3 shows that, as predicted by Proposition 1, the construction loan 

interest rate that makes the developer indifferent between selecting a 

construction loan and using 100% equity is increasing in l, d  and k . Figure 3 

also shows that, as predicted by Proposition 2, the probability of an 

abandonment decision Pr( )ABD   is increasing in l, d  and k . Note that in 

our numerical results reported in Figure 3, the expected payoff of the 

developer ( ( ))E r   is fixed at 1.98 . This is because the construction loan 

interest rate is set to make ( ( )) ( )E r E    (see Equation (15)) and ( )E   is 

not affected by l, d  or k .     
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Figure 3        First Set of Numerical Results 

  

  

  
 

 

We now extend our numerical analysis presented in Figure 3 by analyzing if 

the effects of l , d   or k  on the mutually acceptable construction loan 

interest rate r  and the probability of an abandonment Pr( )ABD   differ when 

the values of the other parameters vary. Specifically, we would like to see 

whether the impact of one risk factor (for example, the loss ratio k ) on the 

loan rate (or probability of an abandonment) will systematically change when 

we change the magnitude of the other two risk factors (in this case, l  and d ). 

Figure 4 illustrates the results.    
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Figure 4        Second Set of Numerical Results 
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(Figure 4 Continued) 

 

 

 
Note: k is the loss ratio, l is the leverage ratio and d is the first-phase loan ratio. 

 

 

44%

46%

48%

50%

52%

54%

16% 17% 18% 19% 20%

A
b

a
n

d
o

n
m

en
t 

P
ro

b
a

b
il

it
y

First-Phase Loan Ratio

D.  Effects of First-Phase Loan Ratio 

on Abandonment Probability

l=90%,k=90% l=85%,k=90% l=85%,k=88%

9%

10%

10%

11%

11%

12%

12%

13%

86% 87% 88% 89% 90%

L
o

a
n

 R
a

te

Loss Ratio

E.  Effects of Loss Ratio on Loan Rate

l=90%,d=20% l=85%,d=20% l=85%,d=18%

46%

48%

50%

52%

54%

A
b

a
n

d
o

n
m

en
t 

P
ro

b
a

b
il

it
y

Loss Ratio

F.  Effects of Loss Ratio 

on Abandonment Probability

l=90%,d=20% l=85%,d=20% l=85%,d=18%



428    Chan, Wang and Yang 

 

Overall, as all six charts in Figure 4 illustrate, we find that the impacts of one 

risk factor (for example, the leverage ratio l ) on the loan rate and the 

probability of an abandonment decision are larger when the magnitude of the 

other two risk factors (in this example, the first-phase loan ratio d  and the 

loss ratio k ) is greater. This result is shown in Charts A and B of Figure 4. 

When we set 90%k  , the positive effects of the leverage ratio l  on the loan 

rate and on the probability of an abandonment decision are stronger when 

20%d   than when the first phase loan ratio 18%d  . Similarly, given 

20%d  , the positive effects of l on the loan rate and the probability of an 

abandonment decision are greater when 90%k  than when 85%k  . Charts 

C and D (Charts E and F) in Figure 4 show similar patterns when d (loss ratio 

k) is used as the main risk factor. The impacts of the first phase loan ratio d  

(loss ratio k ) on the loan rate and the probability of an abandonment decision 

are larger when the magnitude of leverage ratio l  or loss ratio k  (leverage 

ratio l or first-phase loan ratio d) is larger. 
 

 

4. Conclusions 
 

A review of the real estate literature indicates that the pricing of construction 

loans is under-researched. In addition, since construction loans have 

heterogeneous characteristics, their interest rates should significantly differ 

from each other based on the risk levels. Indeed, if a construction loan interest 

rate is independent of its risk, there will be a risk-shifting effect as developers 

can use risky development strategies (by borrowing as much as they can) and 

transfer the risk to the lender (by defaulting on the construction loan when it is 

best for the developer to do so).  

 

In this paper, we develop a basic model for the pricing of construction loans 

based on the characteristics of the development. We pay particular attention to 

three risk factors: loss, leverage and first-phase loan ratios. Our basic model, 

while not detailed enough for practical usage yet, provides a framework for 

determining a construction loan interest rate based on the risk characteristics 

of the development. The results of our model are consistent with the intuition 

that increased development risk means higher construction loan interest rates. 

 

There are three areas that we need to improve upon before this model can be 

used in day-to-day operations. First, we have not discussed how to estimate 

the loss ratio in this model. We just assume that, when a default happens, the 

bank can recover a portion of the loss from the developer or the to-be-

completed properties. We have not discussed on how to estimate this ratio. It 

is possible that a developer can assume personal liability on the loan to reduce 

the risk. (For a recent discussion on how the attitude of developers on the 

investment affects the performance of the properties, see, for example, Sehgal, 

Upreti, Pandey and Bhatia (2015).) It is also possible that a developer can use 

a portfolio of properties as collateral for a group of construction loans. We 
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think that the issues related to personal liability and the use of a portfolio of 

development properties as collateral for a group of construction loans might 

be fruitful areas for future research. (For a discussion on the benefit of using 

diversification strategies, see, for example, Cheok, Sing and Tsai, (2011) and 

Ciochetti, Lai and Shilling (2015).) 

 

The second issue that might deserve our attention is the determination of an 

optimal loan-to-value ratio for a construction loan. In this paper, we provide a 

model to determine the interest rate of a construction loan when we know the 

loan-to-value ratio. In other words, the leverage ratio in our model is 

exogenously determined. However, both the lender and the developer might 

want to know the best leverage ratio that they should use. (For a discussion on 

optimal capital structure with the use of a real options approach, see, for 

example, Jou and Lee (2011).) To achieve this goal, we need to specify the 

objective functions of both the lender and the developer. Although it is not 

difficult to solve this issue once we know the objective functions of the two 

players, it might be difficult to come up with suitable objective functions for 

the developer and the lender. We recommend this topic for future research.  

 

Finally, in this model, we assume that the developer and the lender will settle 

on an interest rate that makes the developer indifferent between using 100% 

equity financing and a construction loan. While this assumption is reasonable 

as a first step for the analysis, in reality, the lender will have to give the 

developer some benefits to motivate the developer to use a construction loan. 

Collins, Harrison, and Seiler (2015) model the negotiation of a borrower with 

a lender on a mortgage modification. Future researchers might be able to use a 

similar approach to include a negotiation process in the determination of the 

construction loan interest rate. 

 

In this paper, we derive a mutually acceptable interest rate for a construction 

loan by treating the loss, leverage and first-phase loan ratios as exogenously 

determined.  These constraints limit the use of the model at this point.  If we 

can improve on the model by allowing these three factors to be endogenously 

determined, the model can then be used to derive the optimal (or equilibrium) 

construction loan interest rate. With these improvements, the model will 

become one that the real estate industry can use in its day-to-day operations 

for designing construction loan contracts. 
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Appendix  
 

A.    Proof for Lemma 1 

 

We solve the game by using a backward induction method. We first analyze 

the abandonment decision of the developer at 1t  .  At this point in time, 

both the developer and the lender know the value of the total construction cost 

c  and the market price of the property p . With the information, the developer 

makes a decision to either abandon the project or continue the construction. 

When unlevered, if the developer continues the construction, the developer 

will incur a second-phase construction cost c hc  and sell the completed 

property at price p at 2t  .  If the developer abandons the project, the 

incremental payoff will be zero.  To make the decision on abandonment, the 

developer compares the payoff from continuing the construction, continue| , 

with that from abandoning the project, abandon| , where 
 

continue| ( ) ,c hc p                                       (25) 
 

abandon| 0.                                                       (26) 

 

From Equations (25) and (26), we know that the necessary and sufficient 

condition for the unlevered developer to continue the construction is 

continue| abandon|  . This condition can be specified as ˆc c p hc    

(which is Equation (1)), where ĉ  is the highest total construction cost under 

which an unlevered developer is willing to continue the construction. 

 

When levered, if the developer continues the construction, the developer will 

receive a second-phase construction loan (1 )d lc  and incur a second-phase 

construction cost ( )c hc . At 2t  , the developer will sell the completed 

property at the market price p  and pay back the construction loan at (1 )lc r . 

If the developer abandons the project, the developer might need to pay the 

lender an amount equal to 
2

(1 )(1 )rdlc k  . To make an abandonment 

decision, the developer compares the incremental payoff from continuing the 

construction, continue|  , with the payoff from abandoning the project, 

abandon|  , where 
 

continue| ( ) (1 ) (1 ),c hc d lc p lc r                                                   (27) 

abandon| (1 )(1 ).
2

r
dlc k                                                                                                    (28) 

 

From Equations (27) and (28), we know that the necessary and sufficient 

condition for the levered developer to continue the construction is
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continue abandon| | .      This can be specified as 

ˆ ' ( ) (1 ) 1
2

r
c c p c l r d h dl k

  
         

  
 (which is Equation (2)), where 

ˆ 'c  is the highest total construction cost under which a levered developer is 

willing to continue the construction. 

   Q.E.D. 
 

 

B.    Proof for Proposition 1 

 

From Equation (15), we define 
 

( ( )) ( ( )) 0.f E r E r      
 

We know that the expected unlevered profit of the developer ( ( ))E r   is not 

affected by the parameters k , l  and d . Using Equation (13) and taking a 

derivative of ( )E    with respect to k , d , l  and r  (assuming an exogenously 

determined r), we derive 
 

2
(1 )( )

( ) 1 1 0,
2 2 2

rlcdE d r
c p hc cl r dk

k

       
             

      





    (29) 

2(1 ) 1( )
( ) 1 1 0

4 2 2

r
rlc kE d r

c p hc cl r dk
d






          
             

      
 

if 2

1

1
r

k


 ;                                                                                                    (30) 

( )
0 if 0 ,

2

E c

l





 
   


                                                                    (31) 

 

where (1 )
2 2

r r
d k r
  

      
  

 

                   (1 ) 1 (1 ) ,
2 2 2

r r dlr
d k r c h dkl lr k p
      

              
      

 

   (1 ) 2 1 1 0;
2 2 2

d r d r
d c p hc lc r dk

dk

                            
    (32) 

   2
1

(1 ) 1 2 1 1 0
2 2 2

r

d d r
r k c p hc lc r dk

dd

                                 


 

 if 2

1

1
r

k


 ;                                                                                                   (33) 
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2

(1 ) 0;
2 2

d r r
c d k r

dl

   
      

  
                                                         (34) 

( )
 { 1 (1 ) ( ) 1 )(1

2 2 2

2 (1 )} 0.

E lc d r
k p c c l r d h dl k

r

d k








        
                        

    

(35) 
 

It should be noted that Equations (29), (30), (32) and (33) hold because

( ) 0 c p hc    (see Equation (6)). Equation (35) holds because 

( ) (1 ) 1  
2

r
p c c l r d h dl k

  
         

  
(see Equation (9)). Furthermore, 

from Equations (29), (30), (31) and (35), we know
( )

0
E

k

 


 ,

( )
0

E

d

 


  if 

2

1

1
r

k


 , 
( )

0
E

l

 


  if 0  , and 

( )
0

E

r

 


 . With the results, we can derive 

 

 

 
 
 

( )

( )
0,

f E

k k

Ef

rr

dr

dk






 


 





                                       (36) 

 

 
 
 

2

( )

1

1( )
0 if ,

r

f E

d d

Ef

rr

dr
k

dd






 


 

 



                         (37) 

 

 
 
 

( )

( )
0 if 0.

f E

l l

Ef

rr

dr

dl






 


 





                             (38) 

 

   Q.E.D. 

 

 

C.    Proof for Proposition 2 

 

Using Equation (14), we first take a derivative of Pr( )ABD   with respect to k ,

d , l  and r   (assuming r is exogenously determined). We obtain: 
 

2
(1 )Pr( )

0;
2

rlcdABD

k 


 


                                                   (39) 

2 2

2

(1 )Pr( ) 1
0  if ;

2 1

r r

r

lc kABD
k

d 

    
  

 
                     (40) 

2 2
(1 ) (1 )Pr( )

0;
2

d rc r dkABD

l 

     
 


                               (41) 
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2
1 (1 )Pr( )

0.
2

dlc kABD

r 

    
 


                                         (42) 

 

We now take a derivative of Pr( )ABD   with respect to k , d  and l  (with the 

endogenously solved r ) by using Equation (14).  Together with the results 

derived in Equations (36) to (42), we derive 
 

Pr( ) Pr( ) Pr( )
0;

d ABD ABD ABD dr

dk k r dk

   
   

 
                               (43) 

2

1

1

Pr( ) Pr( ) Pr( )
0 if  ;

r

d ABD ABD ABD dr
k

dd d r dd





   
    

 
              (44) 

Pr( ) Pr( ) Pr( )
0 if 0.

d ABD ABD ABD dr

dl l r dl

   
     

 
                  (45) 

 

   Q.E.D. 

 

 

 


